
1

Batch Container 6.3.0

2

Table of Contents
Batch Container

High-Level Summary

Important Notices

What's New

Issues Fixed

Known Limitations

Supported Platforms

Upgrade Path

Installation

Pre-requisites

Related Documentation

Batch Container Quick Start Guide

System requirements

Host requirements

Architecture

Accessing the Image

Getting the Image

Software Repository Login

Pulling the Image

Licensing

Using the Container

Determining success

Troubleshooting

Enabling Logging

Common Problems

Building an Image

Requirements for a custom image

Dockerfile

Batch Container API Guide

Transcription Output Format

Feature Usage

Configuration Object

Diarization

Speaker Diarization

Channel Diarization

Custom Dictionary

Output Locale

Advanced Punctuation

SubRip Subtitles

Formatting Common Entities

Overview

Supported Languages

Using the enable_entities parameter

Configuration example

Different entity classes

Output locale styling

Example output

3

Batch Container Migration Guide

Overview

Scope

What has changed

License File

How this affects you

V1 Deprecation

Changes to Notifications

4

Batch Container

High-Level Summary

This release contains instructions on how to run the container with a parallelisation parameter to boost

performane on multi-CPU platforms. It also contains improvements to telephony models for English and Spanish,

and a number of bugfixes.

The following languages now support advanced punctuation: English (en), German (de), Spanish (es), French (fr),

Dutch (nl), Danish (da), Turkish (tr), Malay (ms).

It is recommended that customers on previous releases upgrade to this version.

Important Notices

The legacy V1 API and related output formats will be discontinued in a future release as we align the product with

the same V2 API used by the Speechmatics SaaS: https://asr.api.speechmatics.com/v2/docs. We recommend that

customers familiarise themselves with the configuration object used to specify job configurations as any new

features will only be supported using this mechanism. Future notices will be provided to announce the end of life

of the V1 API, and provide detailed instructions on migrations to the V2 API.

What's New

SubRip (srt) subtitle format

The ability to transcribe in parallel across multiple CPUs

Improvements to the telephony models for English and Spanish

Issues Fixed

The following issues are addressed since the previous release:

Issue

ID
Summary Resolution Description

REQ-

10377,

REQ-

9569

Unfriendly error when

empty audio file is

submitted

It is now possible to submit zero length audio files.

REQ-

11728

Files less than 1 second

skip decoding.

Files that are < 0.3s long are considered to be zero length; but files

between 0.3 and 1.0s (and above) will now be transcribed (assuming

speech is detected in them).

REQ-

10095

StopIteration Exception

in post processing can

cause a job to fail

The exception is now handled properly.

Known Limitations

Issue

ID
Summary Detailed Description and Possible Workarounds

REQ-

1409

Proteus HCL

with <unk>

causes out of

memory error

A custom dictionary list that contains the word '' causes the worker to crash.

https://asr.api.speechmatics.com/v2/docs

5

REQ-

10160

Advanced

punctuation

for Spanish

(es) does not

contain

inverted

marks.

Inverted marks [¿ ¡] are not currently available for Spanish advanced

punctuation.

REQ-

10627

Double full

stops when

acronym is at

the end of the

sentence

If there is an acronym at the end of the sentence, then a double full stop will be

output, for example: "team G.B.."

REQ-

11135

A previous

release (6.1.0)

introduced

unwanted

hesitations in

transcripts.

Due to changes in the way that training data is now ingested to improve the

accuracy of spontaneous speech for English (en) there is a greater likelihood

that hesitations will be included in the output transcrtips. We plan to support a

hesitation filtering capability in a future release for customers that do not want

to see hesitations on transcripts.

Supported Platforms

Docker (17.06.0+) running on Ubuntu, Debian, Fedora or CentOS.

Upgrade Path

None.

Installation

Pull the Batch Container Docker image from the Speechmatics Docker repository.

Pre-requisites

You have a login (URL, username and password) for the Speechmatics Docker repository, and have a Docker

environment (version 17.06.0 or above) running.

Related Documentation
Speechmatics Batch Container Quick Start Guide version 6.2.0

Speechmatics Batch Container API Guide version 6.2.0

For a complete list of languages that are supported by the Speechmatics Container, including those which have

custom dictionary support, please go to the Speechmatics website: https://www.speechmatics.com/language-

support/

Batch Container Quick Start Guide
This guide will walk you through the steps needed to deploy the Speechmatics Batch Container ready for

transcription.

Check system requirements

Pull the Docker Image

https://www.speechmatics.com/language-support/

6

Run the Container

After these steps, the Docker Image can be used to create containers that will transcribe audio files. More

information about using the Speechmatics container transcription service is detailed in the Speechmatics

Container API guide.

System requirements

Speechmatics containerized deployments are built on the Docker platform. In order to operate the containers, the

following requirements will need to be met.

Host requirements

An individual Docker image is required for each language transcription is required within. A single image can be

used to create and run multiple containers concurrently, each running container will require the following

resources:

1 vCPU

2-5GB RAM

100MB hard disk space

The host machine requires a processor with following minimum specification: Intel® Xeon® CPU E5-2630 v4

(Sandy Bridge) 2.20GHz (or equivalent). This is important because these chipsets (and later ones) support

Advanced Vector Extensions (AVX). The machine learning algorithms used by Speechmatics ASR require the

performance optimizations that AVX provides. You should also ensure that your hypervisor has AVX enabled.

Note: Each language pack required is distributed as a separate Docker image. Only the language packs required

need to be installed on the Docker host.

Architecture

Each container:

Provides the ability to transcribe recorded speech in a predefined language. The container will receive

input from most audio and video formats, and will provide the following output:

Transcript word

Word confidence

Timing information

Speaker change and labelling information

Takes one input file and outputs the resulting transcript

Can run in a mode that parallelises processing across multiple processor cores

Supports input file sizes up to 2 hours in length or 4GB in size

All data is transitory, once a container completes its transcription it removes all record of the operation,

no data is persisted.

In addition, multiple instances of the container can be run on the same Docker host. This enables scaling of a

single language or multiple-languages as required.

Accessing the Image

The Speechmatics Docker image is obtained from the Speechmatics Docker repository (jfrog.io). If you do not

have a Speechmatics software repository account or have lost your details, please contact Speechmatics support

support@speechmatics.com.

The latest information about the containers can be found in the solutions section of the support portal. If a

support account is not available or the Containers section is not visible in the support portal, please contact

Speechmatics support support@speechmatics.com for help.

mailto:support@speechmatics.com
https://support.speechmatics.com/
mailto:support@speechmatics.com

7

Prior to pulling any Docker images, the following must be known:

Speechmatics Docker URL – provided by the Speechmatics team

Language Code – the ISO language code (for example fr for French)

LICENSE_KEY - which is required to start a container

TAG – which is used to identify the image version

Getting the Image

After gaining access to the relevant details for the Speechmatics software repository, follow the steps below to

login and pull the Docker images that are required.

Software Repository Login

Ensure the Speechmatics Docker URL and software repository username and password are available. The endpoint

being used will require Docker to be installed. For example:

docker login https://speechmatics-docker-example.jfrog.io

You will be prompted for username and password. If successful, you will see the response:

Login Succeeded

If unsuccessful, please verify your credentials and URL. If problems persist, please contact Speechmatics support.

Pulling the Image

To pull the Docker image to the local environment follow the instructions below. Each supported language pack

comes as a different Docker image, so the process will need to be repeated for each language pack required.

Example: pulling Global English (en) with the {{ book.product.version }} TAG:

docker pull speechmatics-docker-example.jfrog.io/transcriber-en:6.3.0

Example: pulling the Spanish (es) model with the {{ book.product.version }} TAG:

docker pull speechmatics-docker-example.jfrog.io/transcriber-es:6.3.0

The image will start to download. This could take a while depending on your connection speed.

Note: Speechmatics require all customers to cache a copy of the Docker image(s) within their own environment.

Please do not pull directly from the Speechmatics software repository for each deployment.

Licensing

The Docker images we provide have a configured expiry date and must be used in conjunction with the license key

that has been issued to you. The Docker images and license key are specific to your organisation, and should not

be shared with any third parties. License keys must be provided at runtime through a LICENSE_KEY environment

value, like this:

-e LICENSE_KEY=f787b0051e2768b1f619d75faab97f23ee9b7931890c05f97e9f550702

Using the Container

Once the Docker image has been pulled into a local environment, it can be started using the Docker run

command. More details about operating and managing the container are available in the Docker API

documentation.

https://docs.docker.com/engine/api/latest

8

There are two different methods for passing an audio file into a container:

STDIN: Streams audio file into the container though the standard command line entry point

File Location: Pulls audio file from a file location

Here are some examples below to demonstrate these modes of operating the containers.

Example 1: passing a file using the cat command to the Spanish (es) container

cat ~/sm_audio.wav | docker run -i \

 -e LICENSE_KEY=f787b0051e2768b1f619d75faab97f23ee9b7931890c05f97e9f550702 \

 speechmatics-docker-example.jfrog.io/transcriber-es:6.3.0

Example 2: pulling an audio file from a volume-ma directory into the container

docker run -i -v ~/sm_audio.wav:/input.audio \

 -e LICENSE_KEY=f787b0051e2768b1f619d75faab97f23ee9b7931890c05f97e9f550702 \

 speechmatics-docker-example.jfrog.io/transcriber-es:6.3.0

NOTE: the audio file must be mapped into the container with :/input.audio

The Docker run options used are:

Name Description

--env, -e Set environment variables

--interactive , -i Keep STDIN open even if not attached

--volume , -v Bind mount a volume

See Docker docs for a full list of the available options.

Both the methods will produce the same transcribed outcome. STDOUT is used to provide the transcription in a

JSON format. Here's an example:

{

 "format": "1.0",

 "license": "docker-example build (Mon Nov 12 12:00:00 2019): 122 days remaining",

 "speakers": [

 {

 "duration": "2.28",

 "name": "UU",

 "time": "0.57"

 }

],

 "words": [

 {

 "confidence": "1.00",

 "duration": "0.51",

 "name": "This",

 "time": "0.57"

 },

 {

 "confidence": "1.00",

 "duration": "0.21",

 "name": "is",

https://docs.docker.com/engine/reference/commandline/run/

9

 "time": "1.17"

 },

 {

 "confidence": "1.00",

 "duration": "0.09",

 "name": "a",

 "time": "1.38"

 },

 {

 "confidence": "1.00",

 "duration": "0.54",

 "name": "quick",

 "time": "1.47"

 },

 {

 "confidence": "1.00",

 "duration": "0.60",

 "name": "test",

 "time": "2.22"

 },

 {

 "confidence": "1.00",

 "duration": "0.03",

 "name": ".",

 "time": "2.82"

 }

]

}

Determining success

The exit code of the container will determine if the transcription was successful. There are two exit code

possibilities:

Exit Code == 0 : The transcript was a success; the output will contain a JSON output defining the

transcript (more info below)

Exit Code != 0 : the output will contain a stack trace and other useful information. This output should be

used in any communication with Speechmatics support to aid understanding and resolution of any

problems that may occur

Troubleshooting

Enabling Logging

If you are seeing problems then we recommend that you enable logging and open a support ticket with

Speechmatics support: support@speechmatics.com.

To enable logging you add two environment variables:

SM_JOB_ID - a job id, for example: 1

SM_LOG_DIR - the directory inside the container where to write the logs, for example: /logs

The following example shows how to do this, using the -stderr=true argument to dump the logs to stderr:

docker run --rm -e SM_JOB_ID=123 -e SM_LOG_DIR=/logs \

 -v ~/sm_audio.wav:/input.audio \

 -e LICENSE_KEY=f787b0051e2768b1f619d75faab97f23ee9b7931890c05f97e9f550702 \

mailto:support@speechmatics.com

10

 speechmatics-docker-example.jfrog.io/transcriber-en:6.3.0 /

 -stderr=true

When raising a support ticket it is normally easier to write the log output to a specific file. You can do this by

creating a volume mount where the logs will be accessible from after the container has finished. Before running

the container you need to create a directory for the log file and ensure it has the correct permissions. In this

example we use a local logs directory to store the output of the log for a job with ID 124:

mkdir -p logs/124

sudo chown -R nobody:nogroup logs/

sudo chmod -R a+rwx logs/

docker run --rm -v ${PWD}/logs:/logs -e SM_JOB_ID=124 -e SM_JOB_ID=/logs \

 -v ~/sm_audio.wav:/input.audio \

 -e LICENSE_KEY=f787b0051e2768b1f619d75faab97f23ee9b7931890c05f97e9f550702 \

 speechmatics-docker-example.jfrog.io/transcriber-en:6.3.0

tail logs/124/sigurd.log

Common Problems

Common problems to look out for are when there is no recognisable audio in the input file, or it is in a format that

is unsupported. You should also ensure, when using the config object, that the JSON is correctly formatted.

Building an Image

Using STDIN to pass files in and obtain the transcription may not be sufficient for all use cases. It is possible to

build a new Docker Image that will use the Speechmatics Image as a layer. This will allow greater flexibility and a

mechanism to fit into custom workflows. To include the Speechmatics Docker Image inside another image, ensure

to add the pulled Docker image into the Dockerfile for the new application.

Requirements for a custom image

To ensure the Speechmatics Docker image works as expected inside the custom image, please consider the

following:

Any audio that needs to be transcribed must to be copied to a file called "/input.audio" inside the running

container

To initiate transcription, call the application pipeline . The pipeline will start the transcription service

and use /input.audio as the audio source

Once pipeline finishes transcribing, ensure you move the transcription data outside the container

Shutdown the container after each transcription of an audio file

Dockerfile

To add a Speechmatics Docker image into a custom one, the Dockerfile must be modified to include the full image

name of the locally available image.

Example: Adding Global English (en) with tag {{ book.product.version }} to the Dockerfile

FROM speechmatics-docker-example.jfrog.io/transcriber-en:6.3.0

ADD download_audio.sh /usr/local/bin/download_audio.sh

RUN chmod +x /usr/local/bin/download_audio.sh

CMD ["/usr/local/bin/download_audio.sh"]

Once the above image is built, and a container instantiated from it, a script called download_audio.sh will be

executed (this could do something like pulling a file from a webserver and copying it to /input.audio before

11

starting the pipeline application). This is a very basic Dockerfile to demonstrate a way of orchestrating the

Speechmatics Docker Image.

NOTE: For support purposes, it is assumed the Docker Image provided by Speechmatics has been unmodified. If

you experience issues, Speechmatics support will require you to replicate the issues with the unmodified Docker

image e.g. speechmatics-docker-example.jfrog.io/transcriber-en:6.3.0

Batch Container API Guide
This guide will walk you through using the API’s used to invoke features of the Speechmatics Batch Container.

For information on getting started and accessing the Speechmatics software repository please refer to

Speechmatics Container Quick Start Guide.

Transcription Output Format

The transcript output will consist of:

Diarization information

Channel Diarization - channel labelling with relevant transcription in enclosed block

Speaker Diarization - speaker identification, speakers (F# and M#) are identified at the beginning

of the transcript with timing information

No diarization - unidentified speakers will be displayed as "UU" at the beginning of the transcript

JSON format version (examples can be seen in the sections below)

1.0 - used for transcriptions with Speaker Diarization

1.1 - used for transcriptions when Channel Diarization is enabled

2.4 - used when the config.json configuration object is used (recommended approach)

Header information to show license expiry date

A full stop to delimit sentences, irrespective of language being transcribed

A word, confidence and timing information for each transcribed word

Feature Usage

This section explains how to use additional features beyond plain transcription of speech to text.

There are two methods that can be used to access these additional features:

Use of environment values and word lists

Passing a configuration file that contains all feature settings

Of these, the second method is preferable as it allows all feature settings to be supplied as part of one object, and

is more extensible for future use. Both methods are descibed in this guide.

Configuration Object

The config object, if used, is a JSON structure that can be passed as a volume-mapped file (mapped to

/config.json) like this:

docker run -i -v ~/Projects/ba-test/data/shipping-forecast.wav:/input.audio \

 -v ~/tmp/config.json:/config.json \

 speechmatics-docker-example.jfrog.io/transcriber-en:6.3.0

A simple example of a config object file (~/tmp/config.json from the above example) providing custom

dictionary words as part of the additional_vocab property is shown below:

12

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "additional_vocab": ["Met Office", "Fitzroy", "Forties"]

 }

}

The transcript will be in the version 2.4 JSON format, for example:

{

 "format": "2.4",

 "metadata": {

 "created_at": "2019-03-01T17:21:34.002Z",

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "diarization": "none",

 "additional_vocab": [

 {

 "content": "Met Office"

 },

 {

 "content": "Fitzroy"

 },

 {

 "content": "Forties"

 }

]

 }

 },

Diarization

Diarization is the ability to identify a speaker in an audio file. This identification is only related to a single audio file

only. For audio files that contain multiple channels or streams, it is possible to use channel diarization and apply

custom labels to each channel or stream. If your audio file contains only a single channel or stream then you

should choose speaker diarization. By default, containers will transcribe a file with diarization disabled.

Note: Enabling this feature increases the amount of time taken to transcribe an audio file.

Speaker Diarization

To enable speaker diarization the following must be set if you are using the config object:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "diarization": "speaker"

 }

}

Or, if you are using environment variables like this:

-e DIARIZE=true

13

When enabled, the output will contain the speaker Identifiers, these are explained below:

M# - Identifies a male speaker. The # will be a number identifying an individual male speaker

F# - identified a female speaker. The # will be a number identifying an individual female speaker

UU - Speaker is not identified (or diarization is disabled)

Example enabling speaker diarization:

docker run -i -v /home/user/sm_audio.wav:/input.audio \

 -e DIARIZE=true \

 -e LICENSE_KEY=f787b0051e2768bcee3231f619d75faab97f23ee9b7931890c05f97e9f550702 \

 speechmatics-docker-example.jfrog.io/transcriber-en:6.3.0

Example response to show speaker labelling (transcript is not shown):

{

 "format": "1.0",

 "license": "docker-example build (Wed Oct 27 12:23:00 2018): 122 days remaining",

 "speakers": [

 {

 "duration": "10.43",

 "name": "F2",

 "time": "7.82"

 },

 {

 "duration": "20.84",

 "name": "M2",

 "time": "18.41"

 },

 {

 "duration": "193.02",

 "name": "M1",

 "time": "41.45"

 },

 {

 "duration": "263.54",

 "name": "M2",

 "time": "234.47"

 },

 {

 "duration": "81.96",

 "name": "M1",

 "time": "498.06"

 },

 {

 "duration": "22.14",

 "name": "M2",

 "time": "581.63"

 },

 {

 "duration": "193.93",

 "name": "M1",

 "time": "604.55"

 },

14

 {

 "duration": "1.69",

 "name": "F5",

 "time": "803.48"

 }

],

}

Timing information identifies when the speaker started to talk.

Channel Diarization

Channel diarization allows individual channels in an audio file to be labelled. This is ideal for audio files with

multiple channels (up to 6). By default the feature is disabled. The following is required to enable channel

diarization on a 2-channel file that will use labels Customer and Agent :

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "diarization": "channel",

 "channel_diarization_labels": ["Customer", "Agent"]

 }

}

If the config object file is called config.json then you would start the transcription job like this:

docker run -i -v ~/Projects/ba-test/data/shipping-forecast.wav:/input.audio \

 -v ~/tmp/config.json:/config.json \

 speechmatics-docker-example.jfrog.io/transcriber-en:6.3.0

Or, using environment variables like this:

-e CHANNEL_DIARIZATION=true

Channel labels are optional and if provided must be comma separated ASCII characters, for example:

-e CHANNEL_DIARIZATION_LABELS=Agent,Caller

Here is an example using channel diarization with labels, passing in the settings as environment variables:

docker run -i -v /home/user/sm_audio.wav:/input.audio \

 -e CHANNEL_DIARIZATION=true -e CHANNEL_DIARIZATION_LABELS=Agent,Caller \

 -e LICENSE_KEY=f787b0051e2768bcee3231f619d75faab97f23ee9b7931890c05f97e9f550702 \

 speechmatics-docker-example.jfrog.io/transcriber-en:6.3.0

For each named channel, the words will be listed in its own labelled block, for example:

{

 "channels": {

 "Agent": {

 "words": [

 {

 "confidence": "1.00",

 "duration": "0.18",

 "name": "Hey",

15

 "time": "4.38"

 },

 {

 "confidence": "1.00",

 "duration": "0.10",

 "name": "how's",

 "time": "4.65"

 },

 {

 "confidence": "1.00",

 "duration": "0.07",

 "name": "it",

 "time": "4.78"

 },

 {

 "confidence": "1.00",

 "duration": "0.27",

 "name": "going",

 "time": "4.96"

 }

 {

 "confidence": "1.00",

 "duration": "1.43",

 "name": ".",

 "time": "5.73"

 }

]

 },

 "Caller": {

 "words": [

 {

 "confidence": "1.00",

 "duration": "0.17",

 "name": "Yeah",

 "time": "6.43"

 },

 {

 "confidence": "1.00",

 "duration": "0.11",

 "name": "going",

 "time": "6.63"

 },

 {

 "confidence": "1.00",

 "duration": "0.27",

 "name": "good",

 "time": "6.90"

 }

]

 }

 },

 "format": "1.1",

 "license": "docker-example build (Wed Nov 3 12:00:00 2018): 122 days remaining"

}

16

Note:

DIARIZE and CHANNEL_DIARIZATION cannot both be set to true at the same time

If CHANNEL_DIARIZATION is set to true , and no labels are defined with

CHANNEL_DIARIZATION_LABELS then default labels will be used (channel_1, channel_2 etc)

Spaces cannot be used in the channel labels

Custom Dictionary

This allows a custom dictionary wordlist to be added to the container at runtime. Having additional words can

improve the likelihood it will be output in the final transcription. For any audio file being transcribed one custom

dictionary can be provided.

Prior to using this feature, consider the following requirements:

File encoding must be UTF-8

Maximum number of words or phrases in the list is 1000

Each word or phrase needs to be on an individual line

You should remove empty lines, and lines that contain only a hyphen ('-') character

If want to add acronyms (for example 'CEO'), you should use the sounds feature (see below)

Example small custom dictionary:

speechmagic

supercalifragilisticexpialidocious

Techcrunch

Yahoo! Answers

To enable this feature, you use the additional_vocab property of the config object:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "additional_vocab": [

 "speechmagic",

 "supercalifragilisticexpialidocious",

 "Techcrunch",

 "Yahoo! Answers"

]

 }

}

The Custom Dictionary feature supports the Sounds extension that allows you to pass alternate pronunciations to

words. For example the phrases "North Utsire" and "South Utsire" could be added as follows:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "additional_vocab": [

 { "content": "North Utsire", "sounds_like": ["North at Sierra"]},

 { "content": "South Utsire", "sounds_like": ["South at Sierra"]},

 "Fitzroy",

 "Forties",

 { "content": "CEO", "sounds_like": ["C.E.O."]}

]

17

 }

}

You can also pass the custom words list has to be passed as a volume-mapped file called extra_words.txt, like

this:

-v /home/user/sm_dictionary01.txt:/extra_words.txt

If you do this, then the extra words file must be list of words or phrases, for example:

Fisher

Dogger

German Bight

Note: There is no ability to use Sounds when specifying an extra words list like this.

Here is an example custom dictionary passed to the transcription service:

docker run -i -v /home/user/sm_audio.wav:/input.audio \

 -v /home/user/sm_dictionary01.txt:/extra_words.txt \

 -e LICENSE_KEY=f787b0051e2768bcee3231f619d75faab97f23ee9b7931890c05f97e9f550702

 speechmatics-docker-example.jfrog.io/transcriber-en:6.3.0

Example response:

{

 "format": "1.0",

 "license": " docker-example build (Fri Nov 16 12:00:00 2019): 122 days remaining",

 "speakers": [

 {

 "duration": "4.83",

 "name": "UU",

 "time": "0.90"

 }

],

 "words": [

 {

 "confidence": "1.00",

 "duration": "1.23",

 "name": "Yahoo! Answers",

 "time": "0.90"

 },

 {

 "confidence": "1.00",

 "duration": "0.18",

 "name": "is",

 "time": "2.22"

 },

 {

 "confidence": "1.00",

 "duration": "0.09",

 "name": "a",

 "time": "2.40"

 },

 {

18

 "confidence": "1.00",

 "duration": "0.57",

 "name": "community",

 "time": "2.49"

 },

 {

 "confidence": "1.00",

 "duration": "0.54",

 "name": "driven",

 "time": "3.06"

 },

 {

 "confidence": "1.00",

 "duration": "0.57",

 "name": "question",

 "time": "3.60"

 },

 {

 "confidence": "1.00",

 "duration": "0.18",

 "name": "and",

 "time": "4.23"

 },

 {

 "confidence": "1.00",

 "duration": "0.54",

 "name": "answer",

 "time": "4.41"

 },

 {

 "confidence": "0.98",

 "duration": "0.71",

 "name": "website",

 "time": "5.02"

 },

 {

 "confidence": "1.00",

 "duration": "0.00",

 "name": ".",

 "time": "5.73"

 }

]

}

Note: From the above response, notice how "Yahoo! Answers" appears as one "name" value in the output.

This is the expected behavior when a custom dictionary contains a multi-word phrase.

Output Locale

It is possible to optionally specify the language locale to be used when generating the transcription output, so that

words are spelled correctly, for cases where the model language is generic and doesn't already imply the locale.

The output_locale configuration setting is used for this. As an example, the following configuration uses the

Global English (en) language pack with an output locale of British English (en-GB):

19

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "output_locale": "en-GB"

 }

}

Currently, Global English is the only language pack that supports different output locales.

Advanced Punctuation

Some language models now support advanced punctuation (see the Release Notes for a complete list). This uses

machine learning techniques to add in more naturalistic punctuation to make the transcript more readable. As well

as putting punctuation marks in more naturalistic positions in the output, additional punctuation marks such as

commas (,) and exclamation and question marks (!, ?) will also appear.

There is no need to explicitly enable this in the job configuration; languages that support advanced punctuation

will automatically output these marks. If you do not want to see these punctuation marks in the output, then you

can explicitly control this through the punctuation_overrides settings in the config.json file, for example:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "punctuation_overrides": {

 "permitted_marks": [".", ","]

 }

 }

}

Both plain text and JSON output supports punctuation. JSON output places punctuation marks in the results list

marked with a type of "punctuation" . So you can also filter on the output if you want to modify or remove

punctuation.

A sample JSON output containing punctuation looks like this:

{

 "alternatives": [

 {

 "confidence": 1,

 "content": ",",

 "language": "en",

 "speaker": "UU"

 }

],

 "attaches_to": "previous",

 "end_time": 10.15,

 "is_eos": false,

 "start_time": 10.15,

 "type": "punctuation"

}

Note: Advanced punctuation is a V2 feature so, only the V2 output format will show advanced punctuation marks.

20

If you specify the punctuation_overrides element for languages that do not yet support advanced punctuation

then it is ignored.

SubRip Subtitles

In addition to previously described JSON and text output formats, transcripts can be generated in the SubRip (srt)

subtitle format.
This can be done when using a mapped config.json and passing --all-formats flag during

invocation.
The transcripts will be saved in the working directory in all supported formats: JSON, text and SubRip.

The produced SubRip subtitles can be customised using configuration options described below:

{

 "type": "transcription",

 "transcription_config": {

 ...

 },

 "output_config": {

 "srt_overrides": {

 "max_line_length": 37,

 "max_lines": 2

 }

 }

}

max_line_length : sets maximum count of characters per subtitle line including white space (default:

37).

max_lines : sets maximum count of lines in a subtitle section (default: 2).

../common/parallel-processing.md

Formatting Common Entities

Overview

Entities are commonly recognisable classes of information that appear in languages, for example numbers and

dates. Formatting these entities is commonly referred to as Inverse Text Normalisation (ITN). Speechmatics will

output entities in a predictable, consistent written form, reducing post-processing work required aiming to make

the transcript more readable.

The language pack will use these formatted entities by default in the transcription for all outputs (JSON, text and

srt). Additional metadata about these entities can be requested via the API including the spoken words without

formatting and the entity class that was used to format it.

Supported Languages

Entities are supported in the following languages:

Cantonese

Chinese Mandarin (Simplified and Traditional)

English

French

German

Hindi

Italian

Japanese

21

Portuguese

Russian

Spanish

Using the enable_entities parameter

Speechmatics now includes an enable_entities parameter. This can be requested via the API. By default this is

false .

Changing enable_entities to true will enable a richer set of metadata in the JSON output only. Customers

can choose between the default written form, spoken form, or a mixture, for their own workflows.

The changes are as following:

A new type - entity in the JSON output in addition to word and punctuation . For example: "1.99"

would have a type of entity and a corresponding entity_class of decimal

The entity will contain the formatted text in the content section, like other words and punctuation

The content can include spaces, non-breaking spaces, and symbols (e.g. $/£/%)

A new output element, entity_class has been introduced. This provides more detail about how the

entity has been formatted. A full list of entity classes is provided below.

The start and end time of the entity will span all the words that make up that entity

The entity also contains two ways that the content will be output:

spoken_form - Each individual word within the entity, written out in words as it was spoken.

Each individual word has its own start time, end time, and confidence score. For example: "one",

"million", "dollars"

written_form - The same output as within entity content, with a type of word instead. If

there are spaces in the content it will be split into individual words. For example: "$1", "million"

Configuration example

Please see an example configuration file that would request entities:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "enable_entities": true

 }

}

Different entity classes

The following entity_classes can be returned. Entity classes indicate how the numerals are formatted. In some

cases, the choice of class can be contextual and the class may not be what was expected (for example "2001"

may be a "cardinal" instead of "date"). The number of entity_classes may grow or shrink in the future.

N.B. Please note existing behaviour for English where numbers from zero to 10 (excluding where they are output

as a decimal/money/percentage) are output as words is unchanged.

Entity

Class
Formatting Behaviour

Spoken Word Form

Example

Written Form

Example

alphanum A series of three or more

alphanumerics, where an alphanumeric

triple seven five four 77754

22

is a digit less than 10, a character or

symbol

cardinal

Any number greater than ten is

converted to numbers. Numbers ten or

below remain as words. Includes

negative numbers

nineteen 19

credit card

A long series of spoken digits less than

10 are converted to numbers. Support

for common credit cards

one one one one two

two two two three three

three three four four four

four

1111222233334444

date

Day, month and year, or a year on its

own. Any words spoken in the date are

maintained (including "the" and "of")

fifteenth of January

twenty twenty two

15th of January

2022

decimal
A series of numbers divided by a

separator
eighteen point one two 18.12

fraction

Small fractions are kept as words

("half"), complex fractions are

converted to numbers separated by "/"

three sixteenths 3/16

money

Currency words are converted to

symbols before or after the number

(depending on the language)

twenty dollars $20

ordinal
Ordinals greater than 10 are output as

numbers
forty second 42nd

percentage
Numbers with a per cent have the per

cent converted to a % symbol
duecento percento 200%

span
A range expressed as "x to y" where x

and y correspond to another entity class

one hundred to two

hundred million pounds
100 to £200 million

time Times are converted to numbers eleven forty a m 11:40 a.m.

word
Entities that do not match a specific

class
hundreds hundreds

Output locale styling

Each language has a specific style applied to it for thousands, decimals and where the symbol is positioned for

money or percentages.

For example

English contains commas as separators for numbers above 9999 (example: "20,000"), the money symbol

at the start (example: "$10") and full stops for decimals (example: "10.5")

German contains full stops as separators for numbers above 9999 (example: "20.000"), the money

symbol comes after with a non-breaking space (example: "10 $") and commas for decimals (example:

"10,5")

French contains non-breaking spaces as separators for numbers above 9999 (example: "20 000"), the

money symbol comes after with a non-breaking space (example: "10 $") and commas for decimals

(example: "10,5")

23

Example output

Here is an example of a transcript requested with enable_entities set to true:

An entity that is "17th of January 2022", including spaces

The start and end times span the entire entity

An entity_class of date

The spoken_form is split into the following individual words: "seventeenth", "of", "January",

"twenty", "twenty", "two". Each word has its own start and end time

the written_form split into the following individual words: "17th", "of", "January", "2022". Each

word has its own start and end time

Note:

By default and when speaker diarization is enabled, speaker parameter is added per word within the

entity, spoken and written form

When channel diarization is enabled, channel parameter is only added on the results parent within

the entity and not included in spoken and written form

 "results": [

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "17th of January 2022",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 3.14,

 "entity_class": "date",

 "spoken_form": [

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "seventeenth",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 1.41,

 "start_time": 0.72,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "of",

 "language": "en",

 "speaker": "UU"

 }

],

24

 "end_time": 1.53,

 "start_time": 1.41,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "January",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 2.04,

 "start_time": 1.53,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "twenty",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 2.46,

 "start_time": 2.04,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "twenty",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 2.79,

 "start_time": 2.46,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.97,

 "content": "two",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 3.14,

 "start_time": 2.79,

25

 "type": "word"

 }

],

 "start_time": 0.72,

 "type": "entity",

 "written_form": [

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "17th",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 1.33,

 "start_time": 0.72,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "of",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 1.93,

 "start_time": 1.33,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "January",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 2.54,

 "start_time": 1.93,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "2022",

 "language": "en",

 "speaker": "UU"

 }

],

26

 "end_time": 3.14,

 "start_time": 2.54,

 "type": "word"

 }

]

 }

]

If enable_entities is set to false , the output is as below:

 "results": [

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "17th",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 1.33,

 "start_time": 0.72,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "of",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 1.93,

 "start_time": 1.33,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "January",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 2.54,

 "start_time": 1.93,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.99,

27

 "content": "2022",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 3.14,

 "start_time": 2.54,

 "type": "word"

 }

]

}

Batch Container Migration Guide

Overview

This is a guide for customers who are updating to V8.0.0 or later (October 2020). It documents changes in the

batch container, and how you, a customer, may need to reintegrate your batch container with any other systems. It

is provided in addition to our standard release notes and documentation pack.

As part of this upgrade, some V1 features that are no longer supported have been completely deprecated, and will

cease to work as announced in the v6.2.0 release.

In all cases, replacements are supported via our V2 input, and are documented in our Speech API Guide.

The changes below should show no loss of any feature or functionality as a result of the migration.

Scope

The scope of this document shows:

What changes you, the customer, must make to use the Speechmatics batch container v8.0.0 if you have

been using previous versions of the container

If you are still using deprecated V1 features, this document will show which ones are no longer supported,

and what you must use instead to ensure output

Examples of our V2 output, and how it differs from our V1 output

What changes have been made to licensing, and how you, the customer, must license a container prior to

using it

The scope of this document excludes

How to start the Batch Container - this is documented in our quick start guide

Our Speech API - this is documented in the Speech API guide

List of software packages used - this is covered in our release and attribution list

Recommendations for any custom workflows or integrations you have built

What has changed

License File

Previously Speechmatics built batch containers with their own license file integrated within the container for each

language required by a customer. For simplicity and replicability we have moved to a generic customer-agnostic

container for each language, with each customer now receiving a separate license file to use with the container(s)

they are licensed for.

28

Please note: The contents of the license file are confidential. They should be shared on the principles of least

privilege. Speechmatics is not responsible for how you handle, store, or share licensing information.

Speechmatics Support will provide you with a new license file. The license is a JSON file called license.json

and has the following JSON structure:

Item Description

Customer

name
This is your company's name

Id This is internal to Speechmatics

Is-Trial Whether the license is for a trial use of Speechmatics or not

Metadata

What Features a container is licensed to use. These can include:

Speaker Diarization

Channel Diarization

Speaker Change

Batch Container use

Real-time container use

Language: any supported language

Language: A supported individual language (e.g. English)

NotValidAfter
The date after which the license expires and can no longer be used to run the container.

The date is in ISO format

ValidFrom The date from which this license is valid.

Signed Claims

Token

A unique reference number used to validate the license file when running the container.

Generated by Speechmatics

The values in this license file will reflect each customer's individual contract arrangement with Speechmatics.

An example license file is below:

{

 "contractid": 1,

 "creationdate": "2020-03-24 17:43:35",

 "customer": "Speechmatics",

 "id": "c18a4eb990b143agadeb384cbj7b04c3",

 "is_trial": true,

 "metadata": {

 "key_pair_id": 1,

 "request": {

 "customer": "Speechmatics",

 "features": [

 "MAPBA",

 "LANY"

],

29

 "isTrial": true,

 "notValidAfter": "2021-01-01",

 "validFrom": "2020-01-01"

 }

 },

 "signedclaimstoken": "example",

}

How this affects you

Previously the batch container was licensed by use of the environment variable LICENSE_KEY . This is no longer a

valid variable and will not license the product. Instead you may either license the product via the two methods

described below:

Volume mapping the license file into the container. Volume map the location of the license file into the

container when running transcription jobs, like the Configuration Object. Please see below for an example:

docker run -i -v $AUDIO_FILE:/input.audio -v $CONFIG_JSON:/config.json -v

/my_license.json:/license.json batch-asr-transcriber-en:8.0.0

Use the value of the ‘signed claims token’ from the license file and pass it as the value of the

LICENSE_TOKEN variable when running a transcription job. See an example of using LICENSE_TOKEN

below:

docker run -i -v $AUDIO_FILE:/input.audio -v $CONFIG_JSON:/config.json -e

LICENSE_TOKEN='example' batch-asr-transcriber-en:8.0.0

If you lose a license file or it is no longer secure, Speechmatics can generate a new one. Please contact

Speechmatics support if this is the case.

V1 Deprecation

In the Speechmatics container you can still process a media file for transcription without use of the V2

configuration object. This will generate our JSON v2 output without any alteration or changes to the text.

From the V8.0.0 release, the configuration file is now the only way by which you can modify the transcription

output in the Speechmatics container. If you want to use features such as diarization, punctuation overrides,

output locale etc. you must use the configuration object to request these features.

If you already do so, then you do not need to make any changes to how you use the container.

All JSON transcription output will now be in the V2.4 output.

As part of the v7.0.0 release support for V1 features was withdrawn. As part of this release all V1 features have

now since been removed. Where applicable, these have been replaced by options within the configuration object.

This includes the following:

V1 Item Type Replaced By

DIARIZE. Enables speaker diarization
environment

variable

Use the diarization:speaker parameter

within the configuration object

DIARISE. Enables speaker diarization
environment

variable

Use the diarization:speaker parameter

within the configuration object

CHANNEL_DIARISATION. enables channel

diarization on stereo files

environment

variable

Use the diarization:channel parameter

within the configuration object

CHANNEL_DIARISATION_LABELS. Provides environemnt Replaced by the parameter

30

labels to different speakers when using

channel diarization

variable channel_diarization_labels in the

configuration object

LICENSE_KEY. used to license the batch

container

environment

variable
Replaced by LICENSE_TOKEN

/extra_words.txt. Used as a custom dictionary

to generate additional vocabulary objects
text file

Use the additional vocab parameter

within the configuration object to

generate a custom dictionary

/build_date. Documents the date the batch

container was built by
text file

Replaced by the new licensing file, and

no longer needed

/license_days. How many days the license has

to run
text file

Replaced by the new licensing file, and

no longer needed

Changes to Notifications

Notifications are still supported in the batch container as before. There are a few changes in how single and multi-

part notifications are generated and encoded, and this is noted below for integration purposes:

If you request transcript , this will now be output in the JSON-V2 format rather than the deprecated V1

JSON format

If you want to request an empty notification, you must specify contents to be blank by using [] . An

example is provided below

Notifications now have the charset=utf8 on all transcript types. Ensure that your workflow can support

this

For receiving notifications, Content-Type header's used to be set always to application/octet-

stream . This value now corresponds to actual content of the notification and is application/json in

case of JSON-v2 content, text/plain in case of an SRT contetn, and application/octet-stream

for TXT content

An example notification configuration that would generate a notification with no contents is shown below. This is a

change from the previous version of batch container.

{

 "notification_config": [{

 "url": "http://localhost:8080",

 "contents": []

 }]

}

