
1

Batch Container 7.0.3

2

Table of Contents
Batch Container

Important Notices

What's New

7.0.3

7.0.2

7.0.1

7.0.0

Issues Fixed

Known Limitations

Supported Platforms

Installation

Pre-requisites

Related Documentation

Batch Container Quick Start Guide

System requirements

Host requirements

Architecture

Accessing the Image

Getting the Image

Software Repository Login

Pulling the Image

Licensing

Using the Container

Working Directory

Determining success

Troubleshooting

Enabling Logging

Common Problems

Building an Image

Requirements for a custom image

Dockerfile

Running a batch container as a non-root user

Running a Batch Container as a non-root user on Kubernetes

Batch Container API Guide

Transcription Output Format

Feature Usage

Configuration Object

Diarization

Speaker Diarization

Channel Diarization

Speaker Change Detection

Speaker Change Detection With Channel Diarization

Custom Dictionary

Using the Shared Custom Dictionary Cache

Output Locale

Advanced Punctuation

Notifications

3

How to generate multiple transcript formats

SubRip Subtitles

How to transcribe files stored online

How to track a file

Full API Reference

config.json API Reference

jobInfo reference

tracking metadata within the jobInfo file

Ability to run a container with multiple cores

Formatting Common Entities

Overview

Supported Languages

Using the enable_entities parameter

Configuration example

Different entity classes

Output locale styling

Example output

Batch Container Migration Guide

Overview

Scope

What has changed

License File

How this affects you

V1 Deprecation

Changes to Notifications

4

Batch Container

Important Notices

The legacy V1 API and related output formats is no longer supported. V1 API examples have been removed from all

batch container documentation. We recommend use of the V2 API and the config.json object documented in the

Speech API. How to use the V2 API is documented within the Speech API document for 7.0.0.

What's New

7.0.3

Internal bug fixes

7.0.2

Internal bug fixes

7.0.1

We have changed how some words submitted using a Custom Dictionary are recognised for all languages.

This change will affect words that use a splitting character (e.g. COVID-19, catch-22). This change should

provide more accurate transcription of such words.

7.0.0

The V2 API is now the only supported method to transcribe files. The V1 API is no longer supported, and

will be fully deprecated in an imminent release

Updated English and Spanish language packs

SubRip (srt) subtitle format. Customers may also modify how the SRT output is presented

The working directory is no longer /work , but is instead /home/smuser/work

The ability to pull files for transcription from an object store hosted by a cloud provider

The ability to send notifications or callbacks to a customer-specified endpoint

Users may also provide their own metadata information within a separate JSON file for better tracking and

monitoring

Users can cache one or many Custom Dictionaries within a shared cache location specified by

themselves. This improves performance overhead when transcribing files using the same custom

dictionary that has already been cached. Users are responsible for managing their own cache. How to

do so is described in more detail in the Speech API Guide

Users can run the container as a named user (e.g. not as root)

Issues Fixed

The following issues are addressed since the previous release:

Issue

ID
Summary Resolution Description

REQ-

15418

Custom

dictionary with

splitting

characters gets

incorrect

pronunciation

When using words with splitting characters in a Custom Dictionary (for

example covid-19) where a number follows a word we now have the correct

pronunciations created. Splitting characters include ["-", "_", "/", "<", ">",

":", " "]. This is for all languages For v7.0.1 only

REQ-

13442

Some unicode

characters would

cause

This has now been resolved

5

transcription to

fail

REQ-

13990

The batch

container will not

run as a non-root

user on Docker

This is now supported. Guidance on how to do this is in the Quick Start

Guide

REQ-

14062

Occasionally a

file in Spanish

would not be fully

transcribed

This has been resolved with the latest release of Spanish

Known Limitations

Issue

ID
Summary Detailed Description and Possible Workarounds

REQ-

1409

Proteus HCL

with <unk>

causes out of

memory error

A custom dictionary list that contains the word '' causes the worker to crash.

REQ-

10160

Advanced

punctuation

for Spanish

(es) does not

contain

inverted

marks.

Inverted marks [¿ ¡] are not currently available for Spanish advanced

punctuation.

REQ-

10627

Double full

stops when

acronym is at

the end of the

sentence

If there is an acronym at the end of the sentence, then a double full stop will be

output, for example: "team G.B.."

REQ-

11135

A previous

release (6.1.0)

introduced

unwanted

hesitations in

transcripts.

Due to changes in the way that training data is now ingested to improve the

accuracy of spontaneous speech for English (en) there is a greater likelihood

that hesitations will be included in the output transcripts. We plan to support a

hesitation filtering capability in a future release for customers that do not want

to see hesitations on transcripts.

Supported Platforms

Docker (17.06.0+) running on Ubuntu, Debian, Fedora or CentOS.

Installation

Pull the Batch Container Docker image from the Speechmatics Docker repository.

Pre-requisites

You have a login (URL, username and password) for the Speechmatics Docker repository, and have a Docker

environment (version 17.06.0 or above) running.

6

Related Documentation
Speechmatics Batch Container Quick Start Guide version 7.0.0

Speechmatics Batch Container API Guide version 7.0.0

For a complete list of languages that are supported by the Speechmatics Container, including those which have

custom dictionary support, please go to the Speechmatics website: https://www.speechmatics.com/language-

support/

Batch Container Quick Start Guide
This guide will walk you through the steps needed to deploy the Speechmatics Batch Container ready for

transcription.

Check system requirements

Pull the Docker Image

Run the Container

After these steps, the Docker Image can be used to create containers that will transcribe audio files. More

information about using the Speechmatics container transcription service is detailed in the Speechmatics

Container API guide.

System requirements

Speechmatics containerized deployments are built on the Docker platform. In order to operate the containers, the

following requirements will need to be met.

Host requirements

An individual Docker image is required for each language transcription is required within. A single image can be

used to create and run multiple containers concurrently, each running container will require the following

resources:

1 vCPU

2-5GB RAM

100MB hard disk space

The host machine requires a processor with following minimum specification: Intel® Xeon® CPU E5-2630 v4

(Sandy Bridge) 2.20GHz (or equivalent). This is important because these chipsets (and later ones) support

Advanced Vector Extensions (AVX). The machine learning algorithms used by Speechmatics ASR require the

performance optimizations that AVX provides. You should also ensure that your hypervisor has AVX enabled.

Note: Each language pack required is distributed as a separate Docker image. Only the language packs required

need to be installed on the Docker host.

Architecture

Each container:

Provides the ability to transcribe recorded speech in a predefined language. The container will receive

input from most audio and video formats, and will provide the following output:

Transcript word or punctuation

Word or punctuation confidence

License expiry information

Job configuration information

Metadata and tracking information if provided

https://www.speechmatics.com/language-support/

7

Transcript word or punctuation

Word confidence

Timing information

Speaker change and labelling information

Takes one input file and outputs the resulting transcript

Can run in a mode that parallelises processing across multiple processor cores

Can send notifications once a transcript has completed

Can support pulling a file from an online location

Supports input file sizes up to 2 hours in length or 4GB in size

All data is transitory, once a container completes its transcription it removes all record of the operation,

no data is persisted.

In addition, multiple instances of the container can be run on the same Docker host. This enables scaling of a

single language or multiple-languages as required.

Accessing the Image

The Speechmatics Docker image is obtained from the Speechmatics Docker repository (jfrog.io). If you do not

have a Speechmatics software repository account or have lost your details, please contact Speechmatics support

support@speechmatics.com.

The latest information about the containers can be found in the solutions section of the support portal. If a

support account is not available or the Containers section is not visible in the support portal, please contact

Speechmatics support support@speechmatics.com for help.

Prior to pulling any Docker images, the following must be known:

Speechmatics Docker URL – provided by the Speechmatics team

Language Code – the ISO language code (for example fr for French)

LICENSE_KEY - which is required to start a container

TAG – which is used to identify the image version

Getting the Image

After gaining access to the relevant details for the Speechmatics software repository, follow the steps below to

login and pull the Docker images that are required.

Software Repository Login

Ensure the Speechmatics Docker URL and software repository username and password are available. The endpoint

being used will require Docker to be installed. For example:

docker login https://speechmatics-docker-example.jfrog.io

You will be prompted for username and password. If successful, you will see the response:

Login Succeeded

If unsuccessful, please verify your credentials and URL. If problems persist, please contact Speechmatics support.

Pulling the Image

To pull the Docker image to the local environment follow the instructions below. Each supported language pack

comes as a different Docker image, so the process will need to be repeated for each language pack required.

Example: pulling Global English (en) with the 7.0.0 TAG:

docker pull speechmatics-docker-example.jfrog.io/transcriber-en:7.0.0

mailto:support@speechmatics.com
https://support.speechmatics.com/
mailto:support@speechmatics.com

8

Example: pulling the Spanish (es) model with the 7.0.0 TAG:

docker pull speechmatics-docker-example.jfrog.io/transcriber-es:7.0.0

The image will start to download. This could take a while depending on your connection speed.

Note: Speechmatics require all customers to cache a copy of the Docker image(s) within their own environment.

Please do not pull directly from the Speechmatics software repository for each deployment.

Licensing

The Docker images we provide have a configured expiry date and must be used in conjunction with the license key

that has been issued to you. The Docker images and license key are specific to your organisation, and should not

be shared with any third parties. License keys must be provided at runtime through a LICENSE_KEY environment

value, like this:

-e LICENSE_KEY=f787b0051e2768b1f619d75faab97f23ee9b7931890c05f97e9f550702

Using the Container

Once the Docker image has been pulled into a local environment, it can be started using the Docker run

command. More details about operating and managing the container are available in the Docker API

documentation.

There are two different methods for passing an audio file into a container:

STDIN: Streams audio file into the container though the standard command line entry point

File Location: Pulls audio file from a file location

Here are some examples below to demonstrate these modes of operating the containers.

Example 1: passing a file using the cat command to the Spanish (es) container

cat ~/sm_audio.wav | docker run -i \

 -e LICENSE_KEY=f787b0051e2768b1f619d75faab97f23ee9b7931890c05f97e9f550702 \

 speechmatics-docker-example.jfrog.io/transcriber-es:7.0.0

Example 2: pulling an audio file from a volume-ma directory into the container

docker run -i -v ~/sm_audio.wav:/input.audio \

 -e LICENSE_KEY=f787b0051e2768b1f619d75faab97f23ee9b7931890c05f97e9f550702 \

 speechmatics-docker-example.jfrog.io/transcriber-es:7.0.0

NOTE: the audio file must be mapped into the container with :/input.audio

The Docker run options used are:

Name Description

--env, -e Set environment variables

--interactive , -i Keep STDIN open even if not attached

--volume , -v Bind mount a volume

See Docker docs for a full list of the available options.

https://docs.docker.com/engine/api/latest
https://docs.docker.com/engine/reference/commandline/run/

9

Both the methods will produce the same transcribed outcome. STDOUT is used to provide the transcription in a

JSON format. Here's an example:

{

 "format": "2.4",

 "license": "productsteam build (Thu May 14 14:33:09 2020): 953 days remaining",

 "metadata": {

 "created_at": "2020-06-30T15:43:50.871Z",

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "diarization": "none",

 "additional_vocab": [

 {

 "content": "Met Office"

 },

 {

 "content": "Fitzroy"

 },

 {

 "content": "Forties"

 }

]

 }

 },

 "results": [

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "Are",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 3.61,

 "start_time": 3.49,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "on",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 3.73,

 "start_time": 3.61,

 "type": "word"

 },

 {

 "alternatives": [

10

 {

 "confidence": 1.0,

 "content": "the",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 3.79,

 "start_time": 3.73,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "rise",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 4.27,

 "start_time": 3.79,

 "type": "word"

 }

]

}

Working Directory

The working directory is home/smuser/work now rather than work . This is the case whether running the

container as a root or non-root user.

Determining success

The exit code of the container will determine if the transcription was successful. There are two exit code

possibilities:

Exit Code == 0 : The transcript was a success; the output will contain a JSON output defining the

transcript (more info below)

Exit Code != 0 : the output will contain a stack trace and other useful information. This output should be

used in any communication with Speechmatics support to aid understanding and resolution of any

problems that may occur

Troubleshooting

Enabling Logging

If you are seeing problems then we recommend that you enable logging and open a support ticket with

Speechmatics support: support@speechmatics.com.

To enable logging you add two environment variables:

SM_JOB_ID - a job id, for example: 1

SM_LOG_DIR - the directory inside the container where to write the logs, for example: /logs

The following example shows how to do this, using the -stderr=true argument to dump the logs to stderr:

mailto:support@speechmatics.com

11

docker run --rm -e SM_JOB_ID=123 -e SM_LOG_DIR=/logs \

 -v ~/sm_audio.wav:/input.audio \

 -e LICENSE_KEY=f787b0051e2768b1f619d75faab97f23ee9b7931890c05f97e9f550702 \

 speechmatics-docker-example.jfrog.io/transcriber-en:7.0.0 \

 -stderr=true

When raising a support ticket it is normally easier to write the log output to a specific file. You can do this by

creating a volume mount where the logs will be accessible from after the container has finished. Before running

the container you need to create a directory for the log file and ensure it has the correct permissions. In this

example we use a local logs directory to store the output of the log for a job with ID 124:

mkdir -p logs/124

sudo chown -R nobody:nogroup logs/

sudo chmod -R a+rwx logs/

docker run --rm -v ${PWD}/logs:/logs -e SM_JOB_ID=124 -e SM_JOB_ID=/logs \

 -v ~/sm_audio.wav:/input.audio \

 -e LICENSE_KEY=f787b0051e2768b1f619d75faab97f23ee9b7931890c05f97e9f550702 \

 speechmatics-docker-example.jfrog.io/transcriber-en:7.0.0

tail logs/124/sigurd.log

Common Problems

There are occassions where the transcription container will fail to transcribe the media file provided and will exit

without error code 0 (success). Speechmatics heavily advise enabling logging (see instruction above). The logs

will show some of the reasons for the failed job especially when multiple errors can cause the same error code.

Below are some errors with suggestions and how they can be revolved.

Error

Code
Error Resolution

1

“err: signal:

illegal

instruction”

This means that the models couldn’t be loaded within the container. Please

ensure that the host that’s running the Docker engine has an AVX compatible

CPU.

The following can also be done inside the container to check that AVX is listed

in the CPU flags.

$ docker run -it --entrypoint /bin/bash speechmatics-docker-

example.jfrog.io/transcriber-en:7.0.0

$ cat /proc/cpuinfo | grep flags

1
“Unable to set

up logging”

This can occur when a directory is volume mapped into the containers and a log

file cannot be created into that directory.

Example command to map in a tmp directory inside the container to /xxx path:

$ docker run --rm -e SM_LOG_DIR=/xxx -e SM_JOB_ID=1 -v $PWD/tmp:/xxx

speechmatics-docker-example.jfrog.io/transcriber-en:7.0.0

1 “err: licensing

failed”

This generally occurs if either no license key or the wrong key is supplied. Use

the license key provided by Speechmatics.

Example command:

12

$ docker run -i –v /home/user/config.json:/config.json -v

/home/user/example.wav:/input.audio -e LICENSE_KEY=

f787b0051e2768b1f619d75faab97f23ee9b7931890c05f97e9f550702

speechmatics-docker-example.jfrog.io/transcriber-en:7.0.0 --stderr

1
“/input.audio is

not valid”

If volume mapping the file into the container, ensure that a valid audio file is

being mapped in.

1
“failed to get

sample rate”

The sample rate from the audio file that was passed for recognition did not

have a sample rate. Check the audio file is valid and that a sample rate can be

read.

The following ffmpeg can be used to identify it there is a valid sample rate:

$ ffmpeg -i /home/user/example.wav

1 “exit status 1”

If the container is memory (RAM) starved it can quit during the transcription

process. Verify the minimum resource (CPU and RAM) requirements are being

assigned to a transcription container.

The inspect command in docker can be useful to identify if the lack of memory

shutdown the container. Look out for the “OOMKilled” value. Here is an

example.

. $ docker inspect --format='{{json .State}}' $containerID

2

“The value of -

-parallel must

be >= 1, but 0

was supplied”

OR

“invalid value

"--stderr" for

flag --parallel:

parse error”

If using the parallel option to speed up the processing time on files more than 5

minutes in length the -–parallel switch needs to have an integer at least 1. A

non-zero value must be provided if the parallel command is to be used.

The example below shows a valid command:

$ docker run -i –v /home/user/config.json:/config.json -v

/home/user/example.wav:/input.audio -e LICENSE_KEY=

f787b0051e2768b1f619d75faab97f23ee9b7931890c05f97e9f550702

speechmatics-docker-example.jfrog.io/transcriber-en:7.0.0 --parallel 2

If you still continue to face issues, please contact Speechmatics support support@speechmatics.com.

Building an Image

Using STDIN to pass files in and obtain the transcription may not be sufficient for all use cases. It is possible to

build a new Docker Image that will use the Speechmatics Image as a layer. This will allow greater flexibility and a

mechanism to fit into custom workflows. To include the Speechmatics Docker Image inside another image, ensure

to add the pulled Docker image into the Dockerfile for the new application.

Requirements for a custom image

To ensure the Speechmatics Docker image works as expected inside the custom image, please consider the

following:

Any audio that needs to be transcribed must to be copied to a file called "/input.audio" inside the running

container

To initiate transcription, call the application pipeline . The pipeline will start the transcription service

and use /input.audio as the audio source

mailto:support@speechmatics.com

13

Once pipeline finishes transcribing, ensure you move the transcription data outside the container

Shutdown the container after each transcription of an audio file

Dockerfile

To add a Speechmatics Docker image into a custom one, the Dockerfile must be modified to include the full image

name of the locally available image.

Example: Adding Global English (en) with tag 7.0.0 to the Dockerfile

FROM speechmatics-docker-example.jfrog.io/transcriber-en:7.0.0

ADD download_audio.sh /usr/local/bin/download_audio.sh

RUN chmod +x /usr/local/bin/download_audio.sh

CMD ["/usr/local/bin/download_audio.sh"]

Once the above image is built, and a container instantiated from it, a script called download_audio.sh will be

executed (this could do something like pulling a file from a webserver and copying it to /input.audio before

starting the pipeline application). This is a very basic Dockerfile to demonstrate a way of orchestrating the

Speechmatics Docker Image.

NOTE: For support purposes, it is assumed the Docker Image provided by Speechmatics has been unmodified. If

you experience issues, Speechmatics support will require you to replicate the issues with the unmodified Docker

image e.g. speechmatics-docker-example.jfrog.io/transcriber-en:7.0.0

Running a batch container as a non-root user

There are some use cases where you may not be able to run the batch container as a root user. This may be

because you are working in a hosting environment that mandates the use of a named user rather than root.

You must start the container with the command docker run –user $USERNUMBER:$GROUPID . User number and

group ID are non-zero numerical values from a value of 1 up to a value of 65535. So a valid example would be:

docker run -user 1000:3000.

Getting Transcription Output as a non-root user

If you take transcription via the default STDOUT, then this will not change as a non-root user. An example is below:

docker run -u 1020:4000 \

 -v /Users/$USER/work/pipeline/mydev/config.json:/config.json \

 -v /Users/$USER/work/pipeline/mydev/input.audio:/input.audio \

 ${IMAGE_NAME}

If you want to map the output to a specific directory, you must volume map a directory to which a non-root user

would have access.

Running a Batch Container as a non-root user on Kubernetes

Please Note The examples below do not constitute an explicit recommendation to run as non-root user, merely a

guideline on how to do so with Kubernetes only where this is an unavoidable requirement.

If you require named users to be deployed on Kubernetes Pods, you must set the following Security Config. The

user and group must correspond to the user and group you use when starting the container

securityContext:

 runAsUser: {non-zero numerical value between 0 and 65535}

 runAsGroup: {non-zero numerical value between 0 and 65535}

14

There is more information on how to configure security settings on Kubernetes pods here

Some Kubernetes deployments may mandate the use of PodSecurity Admissions Controllers. These provide

stricter security requirements. More information on them can be found here. If your deployment does require this

set up, here is an example configuration that would allow you to carry out transcription as a non-root user.

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: restricted

 annotations:

 seccomp.security.alpha.kubernetes.io/allowedProfileNames:

'docker/default,runtime/default'

 apparmor.security.beta.kubernetes.io/allowedProfileNames: 'runtime/default'

 seccomp.security.alpha.kubernetes.io/defaultProfileName: 'runtime/default'

 apparmor.security.beta.kubernetes.io/defaultProfileName: 'runtime/default'

spec:

 privileged: false

 # Required to prevent escalations to root.

 allowPrivilegeEscalation: false

 requiredDropCapabilities:

 - ALL

 # Allow core volume types.

 volumes:

 - 'configMap'

 - 'emptyDir'

 - 'projected'

 - 'secret'

 - 'downwardAPI'

 # Assume that persistentVolumes set up by the cluster admin are safe to use.

 - 'persistentVolumeClaim'

 hostNetwork: false

 hostIPC: false

 hostPID: false

 runAsUser:

 # Require the container to run without root privileges.

 rule: 'MustRunAsNonRoot'

 seLinux:

 # This policy assumes the nodes are using AppArmor rather than SELinux.

 rule: 'RunAsAny'

 supplementalGroups:

 rule: 'MustRunAs'

 ranges:

 # Forbid adding the root group.

 - min: 1

 max: 65535

 fsGroup:

 rule: 'MustRunAs'

 ranges:

 # Forbid adding the root group.

 - min: 1

 max: 65535

 readOnlyRootFilesystem: false

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

15

Batch Container API Guide
This guide will walk you through using Speechmatics' v2.4 API in order to invoke features of the Speechmatics

Batch Container.

For information on getting started and accessing the Speechmatics software repository please refer to

Speechmatics Container Quick Start Guide.

Transcription Output Format

The transcript output will consist of:

JSON format version (examples can be seen in the sections below)

V2.4 - used when the config.json configuration object is used (only supported approach)

Diarization information

Channel Diarization - channel labelling with relevant transcription in enclosed block

Speaker Diarization - speaker identification, speakers (F# and M#) are identified at the beginning

of the transcript with timing information

Speaker Change - Identifying when different speakers as an element in the JSON output

Speaker Change with Channel Diarization - Channel labelling with relevant transcription in

enclosed block, speaker change elements additionally output at relevant sections

No diarization - unidentified speakers will be displayed as "UU" at the beginning of the transcript

Header information to show license expiry date

A full stop to delimit sentences, irrespective of language being transcribed

A word, confidence and timing information for each transcribed word

Transcription output additionally in txt or srt format

Notification information that can be used to generate callbacks

Metadata about the job that was submitted as part of an optional jobInfo file

Feature Usage

This section explains how to use additional features beyond plain transcription of speech to text.

As part of the Speechmatics' V2.4 API, you must use the config.json object unless otherwise specified in

examples below

Please Note the V1 API is no longer maintained. Using environmental variables to call speech features is neither

recommended nor supported except where this document explicitly designates.

Configuration Object

The config object, if used, is a JSON structure that is passed as a separate volume-mapped file (mapped to

/config.json) when carrying out transcription like this:

docker run -i -v ~/Projects/ba-test/data/shipping-forecast.wav:/input.audio \

 -v ~/tmp/config.json:/config.json \

 speechmatics-docker-example.jfrog.io/transcriber-en:7.0.0

Here is a simple example of a config object file (~/tmp/config.json from the above example). It requests

transcription in English and lists additional custom dictionary words as part of the additional_vocab property:

{

 "type": "transcription",

 "transcription_config": {

16

 "language": "en",

 "additional_vocab": ["Met Office", "Fitzroy", "Forties"]

 }

}

The transcript output will also show the configuration information within the config.json file, as shown below:

{

 "format": "2.4",

 "license": "productsteam build (Thu May 14 14:33:09 2020): 953 days remaining",

 "metadata": {

 "created_at": "2019-03-01T17:21:34.002Z",

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "diarization": "none",

 "additional_vocab": [

 {

 "content": "Met Office"

 },

 {

 "content": "Fitzroy"

 },

 {

 "content": "Forties"

 }

]

 }

 },

Diarization

Diarization is the ability to identify a speaker in an audio file. This identification is only related to a single audio file

only. For audio files that contain multiple channels or streams, it is possible to use channel diarization and apply

custom labels to each channel or stream. If your audio file contains only a single channel or stream then you

should choose speaker diarization. By default, containers will transcribe a file with diarization disabled. In the

JSON output, files without diarisation requested will always show the speaker as 'UU'.
Users can also use

speaker_change to allow changes in the speaker to be detected and then marked in the transcript. Detection of

speaker change is done without identifying which segments were spoken by the same speaker.
Users can also

combine speaker_change with channel diarization to identify both channel and speaker changes.

Note: Enabling diarization increases the amount of time taken to transcribe an audio file. The amount of time will

vary depending on the length of the file.

Speaker Diarization

To enable speaker diarization the following must be set when you are using the config object:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "diarization": "speaker"

 }

}

17

When enabled, the output will contain the speaker Identifiers, these are explained below:

M# - Identifies a male speaker. The # will be a number identifying an individual male speaker

F# - identified a female speaker. The # will be a number identifying an individual female speaker

UU - Speaker is not identified (or diarization is disabled)

The example below shows relevant parts of a transcript with 3 male speakers. The output shows the configuration

information passed in the config.json
object and relevant segments with the different speakers in the JSON

output. Only part of the transcript is shown here to highlight how different speakers are displayed in the output.

"format": "2.4",

"license": "productsteam build (Thu May 14 14:33:09 2020): 953 days remaining",

 "metadata": {

 "created_at": "2020-07-01T13:26:48.467Z",

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "diarization": "speaker"

 }

 },

 "results": [

 {

 "alternatives": [

 {

 "confidence": 0.93,

 "content": "You",

 "language": "en",

 "speaker": "M2"

 }

],

 "end_time": 0.51,

 "start_time": 0.36,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "When",

 "language": "en",

 "speaker": "M1"

 }

],

 "end_time": 12.6,

 "start_time": 12.27,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "And",

 "language": "en",

 "speaker": "M3"

18

 }

],

 "end_time": 80.63,

 "start_time": 80.48,

 "type": "word"

 }

In our JSON output, start_time identifies when a person starts speaking and end_time identifies when they

finish speaking.

Channel Diarization

Channel diarization allows individual channels in an audio file to be labelled. This is ideal for audio files with

multiple channels (up to 6). By default the feature is disabled. The following information is required within the

config.json object to enable channel diarization on a 2-channel file that will use labels Customer and

Agent :

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "diarization": "channel",

 "channel_diarization_labels": ["Customer", "Agent"]

 }

}

If the config object file is called config.json then you would start the transcription job like this:

docker run -i -v ~/Projects/ba-test/data/shipping-forecast.wav:/input.audio \

 -v ~/tmp/config.json:/config.json \

 speechmatics-docker-example.jfrog.io/transcriber-en:7.0.0

For each named channel, the words will be listed in its own labelled block, for example:

 {

 "format": "2.4",

 "license": "productsteam build (Thu May 14 14:33:09 2020): 953 days remaining",

 "metadata": {

 "created_at": "2020-07-01T14:11:43.534Z",

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "diarization": "channel"

 }

 },

 "results": [

 {

 "alternatives": [

 {

 "confidence": 0.87,

 "content": "I",

 "language": "en"

 }

],

19

 "channel": "channel_1",

 "end_time": 14.34,

 "start_time": 14.21,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.87,

 "content": "would",

 "language": "en"

 }

],

 "channel": "channel_1",

 "end_time": 14.62,

 "start_time": 14.42,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.87,

 "content": "love",

 "language": "en"

 }

],

 "channel": "channel_1",

 "end_time": 15.14,

 "start_time": 14.71,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.79,

 "content": "to",

 "language": "en"

 }

],

 "channel": "channel_1",

 "end_time": 16.71,

 "start_time": 16.3,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.67,

 "content": "To",

 "language": "en"

 }

],

 "channel": "channel_2",

 "end_time": 10.39,

20

 "start_time": 10.17,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.64,

 "content": "the",

 "language": "en"

 }

],

 "channel": "channel_2",

 "end_time": 10.68,

 "start_time": 10.52,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.71,

 "content": "unknown",

 "language": "en"

 }

],

 "channel": "channel_2",

 "end_time": 11.27,

 "start_time": 10.75,

 "type": "word"

 }

Note:

Transcript output is provided sequentially by channel. So if you have two channels, all of channel 1 would

be output first, followed by all of channel 2, and so on

You must choose either channel or speaker diarization, you cannot choose both

If you specify channel as a diarisation option, and do not assign channel_diarization_labels then default

labels will be used (channel_1, channel_2 etc)

Spaces cannot be used in the channel labels

Speaker Change Detection

This feature allows changes in the speaker to be detected and then marked in the transcript. Typically it is used to

make some changes in the user interface to indicate to the reader that someone else is talking. Detection of

speaker change is done without detecting which segments were spoken by the same speaker. The config used to

request speaker change detection looks like this:

{

 "type": "transcription",

 "transcription_config": {

 "diarization": "speaker_change",

 "speaker_change_sensitivity": 0.8

 }

}

Note: Speaker change is only recorded as JSON V2 output, so make sure you use the json-v2 format when you

retrieve the transcript.

21

The speaker_change_sensitivity property, if used, must be a numeric value between 0 and 1. It indicates to

the algorithm how sensitive to speaker change events you want to make it. A low value will mean that very few

changes will be signalled (with higher possibility of false negatives), whilst a high value will mean you will see

more changes in the output (with higher possibility of false positives). If this property is not specified, a default of

0.4 is used.

Speaker change elements in the results array appear like this:

{

 "type": "speaker_change",

 "start_time": 0.55,

 "end_time": 0.55,

 "alternatives": []

}

Note: Although there is an alternatives property in the speaker change element it is always empty, and can be

ignored. The start_time and end_time properties are always identical, and provide the time when the change

was detected.

A speaker change indicates where we think a different person has started talking. For example, if one person says

"Hello James" and the other responds with "Hi", there should be a speaker_change element between "James"

and "Hi", for example:

{

 "format": "2.4",

 "job": {

....

 "results": [

 {

 "start_time": 0.1,

 "end_time": 0.22,

 "type": "word",

 "alternatives": [

 {

 "confidence": 0.71,

 "content": "Hello",

 "language": "en",

 "speaker": "UU"

 }

]

 },

 {

 "start_time": 0.22,

 "end_time": 0.55,

 "type": "word",

 "alternatives": [

 {

 "confidence": 0.71,

 "content": "James",

 "language": "en",

 "speaker": "UU"

 }

]

 },

 {

22

 "start_time": 0.55,

 "end_time": 0.55,

 "type": "speaker_change",

 "alternatives": []

 },

 {

 "start_time": 0.56,

 "end_time": 0.61,

 "type": "word",

 "alternatives": [

 {

 "confidence": 0.71,

 "content": "Hi",

 "language": "en",

 "speaker": "UU"

 }

]

 }

]

}

Note: You can only choose speaker_change as an alternative to speaker or channel diarization.

Speaker Change Detection With Channel Diarization

Speaker change can be combined with channel diarization. It will process channels separately and indicate in the

output both the channels and the speaker changes. For example, if a two-channel audio contains two people

greeting each other (both recorded over the same channel), the config submitted with the audio can request the

speaker change detection:

{

 "type": "transcription",

 "transcription_config": {

 "diarization": "channel_and_speaker_change",

 "speaker_change_sensitivity": 0.8

 }

}

The output will have special elements in the results array between two words where a different person starts

talking. For example, if one person says "Hello James" and the other responds with "Hi", there will a

speaker_change json element between "James" and "Hi".

{

 "format": "2.4",

 "job": {

....

 },

 "metadata": {

....

 },

 "results": [

 {

 "channel": "channel_1",

 "start_time": 0.1,

 "end_time": 0.22,

23

 "type": "word",

 "alternatives": [

 {

 "confidence": 0.71,

 "content": "Hello",

 "language": "en",

 "speaker": "UU"

 }

]

 },

 {

 "channel": "channel_1",

 "start_time": 0.22,

 "end_time": 0.55,

 "type": "word",

 "alternatives": [

 {

 "confidence": 0.71,

 "content": "James",

 "language": "en",

 "speaker": "UU"

 }

]

 },

 {

 "channel": "channel_1",

 "start_time": 0.55,

 "end_time": 0.55,

 "type": "speaker_change",

 "alternatives": []

 },

 {

 "channel": "channel_1",

 "start_time": 0.56,

 "end_time": 0.61,

 "type": "word",

 "alternatives": [

 {

 "confidence": 0.71,

 "content": "Hi",

 "language": "en",

 "speaker": "UU"

 }

]

 }

]

}

Note: Do not try to request speaker_change and channel diarization as multiple options: only

channel_and_speaker_change is an accepted parameter for this output.

Custom Dictionary

This allows a custom dictionary wordlist to be added to the container at runtime. Having additional words can

improve the likelihood it will be output in the final transcription. For any audio file being transcribed one custom

24

dictionary can be provided.

Prior to using this feature, consider the following requirements:

File encoding must be UTF-8

Maximum number of words or phrases in the list is 1000

Each word or phrase needs to be on an individual line

You should remove empty lines, and lines that contain only a hyphen ('-') character. You should not

include hyphens within the custom dictionary

If want to add acronyms (for example 'CEO'), you should use the sounds feature (see below)

Including the word does not always ensure it will be recognised. We recommend use of the sounds_like

feature to increase the likelihood of recognition if this is the case

To enable this feature, you use the additional_vocab property of the config object:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "additional_vocab": [

 "speechmagic",

 "supercalifragilisticexpialidocious",

 "Techcrunch",

 "Yahoo! Answers"

]

 }

}

The Custom Dictionary feature supports the sounds_like extension that allows you to pass alternate

pronunciations to words. For example the phrases "North Utsire" and "South Utsire" could be added as follows:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "additional_vocab": [

 { "content": "North Utsire", "sounds_like": ["North at Sierra"]},

 { "content": "South Utsire", "sounds_like": ["South at Sierra"]},

 "Fitzroy",

 "Forties",

 { "content": "CEO", "sounds_like": ["C.E.O."]}

]

 }

}

You can see the custom dictionary entries in the transcription output below as well

Example response:

{

 "format": "2.4",

 "metadata": {

 "created_at": "2020-07-01T14:36:15.297Z",

 "type": "transcription",

 "transcription_config": {

 "language": "en",

25

 "diarization": "none",

 "additional_vocab": [

 {

 "content": "North Utsire",

 "sounds_like": [

 "North at Sierra"

]

 },

 {

 "content": "South Utsire",

 "sounds_like": [

 "South at Sierra"

]

 },

 {

 "content": "Fitzroy"

 },

 {

 "content": "Forties"

 },

 {

 "content": "CEO",

 "sounds_like": [

 "C.E.O."

]

 }

]

 }

 }

Note: additional_vocab items that are multi-word phrases will be output as a single word (e.g. Yahoo! Answers

would be a single content item rather than two)

Using the Shared Custom Dictionary Cache

Processing a large custom dictionary repeatedly can be CPU consuming and inefficient.
The Speechmatics Batch

Container includes a cache mechanism for custom dictionaries to limit excessive resource use.
By using this cache

mechanism, the container can reduce the overall time needed for speech transcription when repeatedly using the

same custom dictionaries. You will see performance benefits on re-using the same custom dictionary from the

second time onwards.

It is not a requirement to use the shared cache to use the Custom Dictionary.

The cache volume is safe to use from multiple containers concurrently if the operating system and its filesystem

support file locking operations.
The cache can store multiple custom dictionaries in any language used for batch

transcription. It can support multiple custom dictionaries in the same language.

If a custom dictionary is small enough to be stored within the cache volume, this will take place automatically if the

shared cache is specified.

For more information about how the shared cache storage management works, please see Maintaining the

Shared Cache.

We highly recommend you ensure any location you use for the shared cache has enough space for the number of

custom dictionaries you plan to allocate there. How to allocate custom dictionaries to the shared cache is

documented below.

26

How to set up the Shared Cache

The shared cache is enabled by setting the following value when running transcription:

Cache Location: You must volume map the directory location you plan to use as the shared cache to

/cache when submitting a job

SM_CUSTOM_DICTIONARY_CACHE_TYPE : (mandatory if using the shared cache) This environment variable

must be set to shared

SM_CUSTOM_DICTIONARY_CACHE_ENTRY_MAX_SIZE : (optional if using the shared cache). This determines

the maximum size of any single custom dictionary that can be stored within the shared cache in bytes

E.G. a SM_CUSTOM_DICTIONARY_CACHE_ENTRY_MAX_SIZE with a value of 10000000 would set a

total storage size of 10MB

For reference a custom dictionary wordlist with 1000 words produces a cache entry of size

around 200 kB, or 200000 bytes

A value of -1 will allow every custom dictionary to be stored within the shared cache. This is the

default assumed value

A custom dictionary cache entry larger than the

SM_CUSTOM_DICTIONARY_CACHE_ENTRY_MAX_SIZE will still be used in transcription, but will not

be cached

Maintaining the Shared Cache

If you specify the shared cache to be used and your custom dictionary is within the permitted size, Speechmatics

Batch Container will always try to cache the custom dictionary. If a custom dictionary cannot occupy the shared

cache due to other cached custom dictionaries within the allocated cache, then older custom dictionaries will be

removed from the cache to free up as much space as necessary for the new custom dictionary. This is carried out

in order of the least recent custom dictionary to be used.

Therefore, you must ensure your cache allocation large enough to handle the number of custom dictionaries you

plan to store. We recommend a relatively large cache to avoid this situation if you are processing multiple custom

dictionaries using the batch container (e.g 50 MB). If you don't allocate sufficient storage this could mean one or

multiple custom dictionaries are deleted when you are trying to store a new custom dictionary.

It is recommended to use a docker volume with a dedicated filesystem with a limited size. If a user decides to use

a volume that shares filesystem with the host, it is the user's responsibility to purge the cache if
necessary.

Creating the Shared Cache

In the example below, transcription is run where an example local docker volume is created for the shared cache. It

will allow a custom dictionary of up to 5MB to be cached.

docker volume create speechmatics-cache

docker run -i -v /home/user/sm_audio.wav:/input.audio \

 -v /home/user/config.json:/config.json:ro \

 -e SM_CUSTOM_DICTIONARY_CACHE_TYPE=shared \

 -e SM_CUSTOM_DICTIONARY_CACHE_ENTRY_MAX_SIZE=5000000 \

 -v speechmatics-cache:/cache \

 -e LICENSE_KEY=f787b0051e2768bcee3231f619d75faab97f23ee9b7931890c05f97e9f550702 \

 speechmatics-docker-example.jfrog.io/transcriber-en:7.0.0

Viewing the Shared Cache

If all set correctly and the cache was used for the first time, a single entry in the cache should be present.

The following example shows how to check what Custom Dictionaries are stored within the cache. This will show

the language, the sampling rate, and the checksum value of the cached dictionary entries.

27

ls $(docker inspect -f "{{.Mountpoint}}" speechmatics-cache)/custom_dictionary

en,16kHz,db2dd9c0d10faa8006d8a3fabc86aef6b6e27b3ccbd2a945d3aae791c627f0c5

Reducing the Shared Cache Size

Cache size can be reduced by removing some or all cache entries.

rm -rf $(docker inspect -f "{{.Mountpoint}}" speechmatics-cache)/custom_dictionary/*

[NOTE] Manually purging the cache

Before manually purging the cache, ensure that no containers have the volume mounted, otherwise an error

during transcription might occur. Consider creating a new docker volume as a temporary cache while

performing purging maintenance on the cache.

Output Locale

It is possible to optionally specify the language locale to be used when generating the transcription output, so that

words are spelled correctly, for cases where the model language is generic and doesn't already imply the locale.

Currently, Global English is the only language pack that supports different output locales. The following locales are

supported:

en-AU: supports Australian English

en-GB: supports British English

en-US: supports American English

The output_locale configuration setting is used for this. As an example, the following configuration uses the

Global English (en) language pack with an output locale of British English (en-GB):

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "output_locale": "en-GB"

 }

}

Advanced Punctuation

Some language models now support advanced punctuation. This uses machine learning techniques to add in more

naturalistic punctuation to make the transcript more readable. As well as putting punctuation marks in more

naturalistic positions in the output, additional punctuation marks such as commas (,) and exclamation and

question marks (!, ?) will also appear.

There is no need to explicitly enable this in the job configuration; languages that support advanced punctuation

will automatically output these marks. If you do not want to see these punctuation marks in the output, then you

can explicitly control this through the punctuation_overrides settings in the config.json file, for example:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "punctuation_overrides": {

 "permitted_marks": [".", ","]

 }

28

 }

}

Both plain text and JSON output supports punctuation. JSON output places punctuation marks in the results list

marked with a type of "punctuation" . So you can also filter on the output if you want to modify or remove

punctuation.

A sample JSON output containing punctuation looks like this:

{

 "alternatives": [

 {

 "confidence": 1,

 "content": ",",

 "language": "en",

 "speaker": "UU"

 }

],

 "attaches_to": "previous",

 "end_time": 10.15,

 "is_eos": false,

 "start_time": 10.15,

 "type": "punctuation"

}

Note: Advanced punctuation is a V2 feature so, only the V2 output format will show advanced punctuation marks.

is_eos_ is a parameter only passed in the transcription output when Advanced punctuation is used. EOS stands

for 'end of sentence' and will only give a Boolean value of either true or false.

If you specify the punctuation_overrides element for languages that do not yet support advanced punctuation,

then it will be ignored.

Notifications

Speechmatics allows customers to receive callbacks to a web service they control.
Speechmatics will then make a

HTTP POST request once the transcription is available. If you wish to enable notifications, you must add the

notification_config only as part of the
 config.json object. This is separate to the transcription_config.

The following
parameters are available:

url : (mandatory) The URL to which a notification message will be sent upon completion of the job. If

contents is empty, then the body of the message will be empty

contents : (optional) Specifies a list of item(s) to be attached to the notification message. If only one

item is listed, it will be sent as the body of the request with Content-Type set to an appropriate value such

as application/octet-stream or application/json.
If multiple items are listed they will be sent as

named file attachments using the multipart content type.
Examples of what can be sent include the

following:

data : The audio file submitted for the job.

jobinfo : A summary of the job. This will only be provided if you provide a jobinfo.json file when

submitting a file for transcription. Please see the relevant section for information

transcript.json-v2 : The transcript in json-v2 format.

transcript.txt : The transcript in txt format.

transcript.srt : The transcript in srt format.

method : (optional) the method to be used with HTTP and HTTPS URLs. If no option is chosen, the

default is POST. PUT is now supported to allow uploading of content directly to an object store such as

29

S3.

auth_headers : (optional) A list of additional headers to be added to the notification request when

using http or https. This is intended to support authentication or authorization, for example by supplying

an OAuth2 bearer token.

If you want to upload content directly to an object store, for example Amazon S3, you must ensure that the URL

grants the Speechmatics container appropriate permissions when carrying out notifications. Pre-authenticated

URLs, generated
by an authorsed user, allow non-trusted devices access to upload to access stores. AWS carries

this out via
generating pre-signed URLs. Microsoft Azure allows similar acess via Shared Access Signatures.

Please see the section [How to transcribe files stored online](### How to transcribe files stored online) for
details

of how to pull files from online storage locations for transcription, and more information on pre-authenticated

URLs

An example request for transcription in English with notification_config is shown below:

{

 "type": "transcription",

 "transcription_config": { "language": "en" },

 "notification_config": [

 {

 "url": "https://collector.example.org/callback",

 "contents": ["transcript", "data"],

 "auth_headers": ["Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhb"]

 }

]

 }

If the callback is unsuccessful, it will repeat up to three times in total. If,
after three times, it is still unsuccessful, it

will process only the transcript
via STDOUT.

How to generate multiple transcript formats

In addition to our primary JSON format, the Speechmatics container can
output transcripts in the plain text (TXT)

and SubRip (SRT) subtitle format.
This can be done by using --allformats command and then specifying

<$EXAMPLE_DIRECTORY> parameter within
the transcription request. The <$EXAMPLE_DIRECTORY> is where all

supported transcript formats will be saved. Users can also use --all-formats to generate the same response.

This directory must be mounted into the container so the transcripts can
be retrieved after container finishes. You

will receive a transcript in all
currently supported formats: JSON, TXT, and SRT.

The following example shows how to use --allformats parameter.
In this scenario, after processing the file,

three separate transcripts would be
found in the ~/tmp/output directory. These transcripts would be in JSON,

TXT, and SRT format.

docker run \

 -v ~/Projects/ba-test/data/shipping-forecast.wav:/input.audio \

 -v ~/tmp/config.json:/config.json \

 -v ~/tmp/output:/example_output_dir_name \

 speechmatics-docker-example.jfrog.io/transcriber-en:7.0.0 \

 --allformats /example_output_dir_name

SubRip Subtitles

SubRip (SRT) is a subtitling format that can be used in to generate subtitles
for video content or other workflows.

Our SRT output will generate a transcript
together with corresponding alignment timestamps. We follow best

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-presigned-urls.html
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview

30

practice
as recommended by major broadcasters in our default line length and number of
lines output.

You can change the maximum number of lines supported, and the maximum character
space within a line, by using

configuration options as part of the output_config,
which is part of the overall config.json object described

below:

{

 "type": "transcription",

 "transcription_config": {

 ...

 },

 "output_config": {

 "srt_overrides": {

 "max_line_length": 37,

 "max_lines": 2

 }

 }

}

max_line_length : sets maximum count of characters per subtitle line including white space (default:

37).

max_lines : sets maximum count of lines in a subtitle section (default: 2).

How to transcribe files stored online

If you want to access a file stored in cloud storage, for example AWS S3 or Azure
Blob Storage, you can use the

fetch_data parameter within the config.json
object. The fetch_data parameter specifies a cloud storage

location.

You must ensure the URL you provide grants Speechmatics
appropriate privileges to access the necessary

files, otherwise this will result
in a transcription error. Cloud providers like AWS and Azure allow temporary access

to non-privileged
parties to access and upload objects to cloud storage via generation of
authenticated URLs by

an authorised user.
AWS recommends using pre-signed URLs to grant access
when accessing objects from and

uploading to S3. Azure recommends
use of shared access signatures when accessing from
and uploading to Azure

Storage. Speechmatics supports both of these options

A pre-generated URL will containe authorization parameters within the URL. These
can include information about

how long the URL is valid for and what permissions
access to the URL enables. More information is present on the

page of each cloud
provider

To successfully call data objects stored online using the Speechmatics container
you must use the following

parameters:

url : (mandatory if you want to access an online file) the location of the file

auth_headers : (optional) If your cloud storage solution requires authentication. The auth_headers

parameter provides the headers necessary to access the resource.
This is intended to support

authentication or authorization when using http or https, for example by supplying an OAuth2 bearer

token

An example is below:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en"

 },

 "fetch_data": {

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-presigned-urls.html
https://docs.microsoft.com/en-gb/azure/storage/common/storage-sas-overview

31

 "url": "https://example.s3.amazonaws.com/folder/file.mp3?

&AWSAccessKeyId=...&Expires=...&Signature=..."

 }

}

How to track a file

The jobInfo file

You can optionally submit additional information to the batch container that can then be used as further or

tracking metadata. To do so you must submit a jobInfo file as a sepatate json object. This file is separate to the

config.json object
when submitting a request. The jobInfo file must include a unique id, the name and

duration of the data file, and the UTC date the job was created. This information is then available in job results and

in callbacks.

When using a jobInfo file you must submit the following mandatory properties:

created_at - The UTC time the job was created at. An example is "2019-01-17T17:50:54.113Z"

data_name - The name of the file submitted as part of the job. An example is example.wav . This does

not need to match the actual file name

duration - The length of the audio file. This must be an integer value in seconds and must be at least 0

id - A customer-unique ID that is assigned to a job. This is not a value provided by Speechamtics

Optional Metadata

You may also submit the following optional properties as part of metadata tracking. These are properties that are

unique to your organisation
that you may wish to or are required to track through a company workflow or where

you are processing large amounts of files. This information will then be available in the jobInfo output
and in

notification callbacks:

tracking - Parent of the following child properties. If you are submitting metadata for tracking this

must be included

title - The title of the job

reference - External system reference

tag - Any tags by which you associate files or data

details - Customer-defined JSON structure. These can include information valuable to you

about the job

An example jobInfo.json file is below, with optional metadata inserted

{

 "created_at": "2020-06-26T12:12:24.625Z",

 "data_name": "example_file",

 "duration": 5,

 "id": "1",

 "tracking": {

 "title": "ACME Q12018 Statement",

 "reference": "/data/clients/ACME/statements/segs/2018Q1-seg8",

 "tags": [

 "quick-review",

 "segment"

],

 "details": {

 "client": "ACME Corp",

 "segment": 8,

32

 "seg_start": 963.201,

 "seg_end": 1091.481

 }

 }

}

Running the JobInfo file

Here is an example of processing a file on the batch container with an example jobInfo file:

docker run -v /PATH/TO/FILE/jobInfo.json:/jobInfo.json \

 -v /PATH/TO/FILE/config.json:/config.json \

 -v /PATH/TO/FILE/audio.wav:/input.audio \

 -e LICENSE_KEY=$license speechmatics-docker-prod-productsteam.jfrog.io/transcriber-

en:7.0.0

jobInfo Output Example

Here is an example of the json output when using a jobInfo file, with the first word of the transcript.
You can see

the output is divided into several sections:

The license information, including the time of build and number of days remaining

The information present in the jobInfo file, including any metadata or tracking information

The configuration information presented in the config.json file

The results of the transcript, including the word, confidence score, diarization information etc.

{

 "format": "2.4",

 "license": "productsteam build (Thu May 14 14:33:09 2020): 953 days remaining",

 "job": {

 "created_at": "2020-07-01T12:46:34.393Z",

 "data_name": "example.wav",

 "duration": 128,

 "id": "1",

 "tracking": {

 "details": {

 "client": "ACME Corp",

 "segment": 8,

 "seg_start": 963.201,

 "seg_end": 1091.481

 },

 "reference": "/data/clients/ACME/statements/segs/2018Q1-seg8",

 "tags": [

 "quick-review",

 "segment"

],

 "title": "ACME Q12018 Statement"

 }

 },

 "metadata": {

 "created_at": "2020-07-01T12:47:28.470Z",

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "diarization": "speaker"

 }

33

 },

 "results": [

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "This",

 "language": "en",

 "speaker": "M1"

 }

],

 "end_time": 1.98,

 "start_time": 1.86,

 "type": "word"

 }

]

}

NB When using the jobInfo file the format output will show 2 created_at parameters. The created_at under

job is when the file was submitted for transcription
The createdDate under metadata is when the output

was produced. The time difference between the two provides the total transcription time, including any system

delays as well as the actual time taken to process the job.

Full API Reference

Below are the full API references for the config.json and the jobInfo.json files.

config.json API Reference

The config.json is constructed of multiple configuration settings, each of which is responsible for a separate

section of transcription output. All configuration settings are passed within the type object Only

transcription_config is mandatory.

type (Mandatory): Within type you must pass all other config information

transcription_config: (Mandatory) Information about what language and features you want to use in the

batch container

fetch_data: (Optional) If you wish to transcribe a file stored online, you may pass this within the

config.json file

notification_config: (Optional) If you want to use callbacks, this documents where and how they are sent

output_config: (Optional) If you want to retrieve files in SRT format, and you want to alter the default

settings in how SRT appears only.

transcription_config

Name Type Description Required

language string
Language model to process the audio input, normally

specified as an ISO language code
Yes

additional_vocab

[

object

]

List of custom words or phrases that should be

recognized. Alternative pronunciations can be

specified to aid recognition.

No

punctuation_overrides

[

object

]

Control punctuation settings. Only valid with

languages that support advanced punctuation. These

are English, French, German, Spanish, Dutch, Malay,

and Turkish.

No

34

diarization string The default is none. You may specify options of

speaker, channel,speaker_change,

channel_and_speaker_change, or none

No

channel_diarization_labels

[

string

]

Transcript labels to use when using collating separate

input channels. Only applicable when you have

selected channel as a diarization option

No

output_locale string

Only applicable with global English. Correct maps

words to local spellings. Options are, en-AU, en-GB, or

en-US

No

fetch_data

Name Type Description Required

url string The online location of the file. Yes

auth_headers [string]

A list of additional headers to be added to the input fetch request

when using http or https. This is intended to support

authentication or authorization, for example by supplying an

OAuth2 bearer token.

No

notification_config

Name Type Description Required

url string

The url to which a notification message will be sent upon

completion of the job. If only one item is listed, it will be sent as

the body of the request with Content-Type set to an appropriate

value such as application/octet-stream or application/json. If

multiple items are listed they will be sent as named file

attachments using the multipart content type. If contents is not

specified, the transcript item will be sent as a file attachment

named data_file, for backwards compatibility. If the job was

rejected or failed during processing, that will be indicated by the

status, and any output items that are not available as a result will

be omitted. The body formatting rules will still be followed as if all

items were available. The user-agent header is set to Speechmatics

API V2 in all cases.

Yes

content
[string

]

Specifies a list of items to be attached to the notification

message. When multiple items are requested, they are included as

named file attachments.

No

method string
The method to be used with http and https urls. The default is

POST.
No

auth_headers [string]

A list of additional headers to be added to the input fetch request

when using http or https. This is intended to support

authentication or authorization, for example by supplying an

OAuth2 bearer token.

No

output_config

Name Type Description Required

35

srt_overrides object Parameters to override the defaults for SubRip (srt) subtitle format.

- max_line_length: sets maximum count of characters per subtitle

line including white space (default: 37). -max_lines: sets maximum

number of lines per subtitle segment (default: 2).

No

jobInfo reference

Name Type Description Required

createdAt dateTime The UTC date time the job was created. Yes

data_name string Name of the data file submitted for job. No

duration integer The file duration (in seconds). No

tracking object Additional tracking information No

tracking metadata within the jobInfo file

The following information can be passed within the tracking object as part of the jobInfo file

Name Type Description Required

title string The title of the job. No

reference string External system reference. No

tags [string] A set of keywords No

details object Customer-defined JSON structure. No

For a full JobInfo example please see the example above in [How to track a file](###How to track a file.)

Ability to run a container with multiple cores

For customers who are looking to improve job turnaround time and who are able to assign sufficient resources, it

is possible to pass a parallel transcription parameter to the container to take advantage of multiple CPUs. The

parameter is called parallel and the following example shows how it can be used. In this case to use 4 cores to

process the audio you would run the container like this:

docker run -i -rm -v ~/tmp/shipping-forecast.wav:/input.audio \

 -v ~/tmp/config.json:/config.json \

 speechmatics-docker-example.jfrog.io/transcriber-en:7.0.0 \

 --parallel=4

Depending on your hardware, you may need to experiment to find the optimum performance. We've noticed

significant improvement in turnaround time for jobs by using this approach.

If you limit or are limited on the number of CPUs you can use (for example your platform places restrictions on the

number of cores you can use, or you use the --cpu flag in your docker run command), then you should

ensure that you do not set the parallel value to be more than the number of available cores. If you attempt to

use a setting in excess of your free resources, then the container will only use the available cores.

If you simply increase the parallel setting to a large number you will see diminishing returns. Moreover, because

files are split into 5 minute chunks for parallel processing, if your files are shorter than 5 minutes then you will see

no parallelization (in general the longer your audio files the more speedup you will see by using parallel

processing).

36

If you are running the container on a shared resource you may experience different results depending on what

other processes are running at the same time.

The optimum number of cores is N/5, where N is the length of the audio in minutes. Values higher than this will

deliver little to no value, as there will be more cores than chunks of work. A typical approach will be to increment

the parallel setting to a point where performance plateaus, and leave it at that (all else being equal).

For large files and large numbers of cores, the time taken by the first and last stages of processing (which cannot

be parallelized) will start to dominate, with diminishing returns.

Formatting Common Entities

Overview

Entities are commonly recognisable classes of information that appear in languages, for example numbers and

dates. Formatting these entities is commonly referred to as Inverse Text Normalisation (ITN). Speechmatics will

output entities in a predictable, consistent written form, reducing post-processing work required aiming to make

the transcript more readable.

The language pack will use these formatted entities by default in the transcription for all outputs (JSON, text and

srt). Additional metadata about these entities can be requested via the API including the spoken words without

formatting and the entity class that was used to format it.

Supported Languages

Entities are supported in the following languages:

Cantonese

Chinese Mandarin (Simplified and Traditional)

English

French

German

Hindi

Italian

Japanese

Portuguese

Russian

Spanish

Using the enable_entities parameter

Speechmatics now includes an enable_entities parameter. This can be requested via the API. By default this is

false .

Changing enable_entities to true will enable a richer set of metadata in the JSON output only. Customers

can choose between the default written form, spoken form, or a mixture, for their own workflows.

The changes are as following:

A new type - entity in the JSON output in addition to word and punctuation . For example: "1.99"

would have a type of entity and a corresponding entity_class of decimal

The entity will contain the formatted text in the content section, like other words and punctuation

The content can include spaces, non-breaking spaces, and symbols (e.g. $/£/%)

A new output element, entity_class has been introduced. This provides more detail about how the

entity has been formatted. A full list of entity classes is provided below.

37

The start and end time of the entity will span all the words that make up that entity

The entity also contains two ways that the content will be output:

spoken_form - Each individual word within the entity, written out in words as it was spoken.

Each individual word has its own start time, end time, and confidence score. For example: "one",

"million", "dollars"

written_form - The same output as within entity content, with a type of word instead. If

there are spaces in the content it will be split into individual words. For example: "$1", "million"

Configuration example

Please see an example configuration file that would request entities:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "enable_entities": true

 }

}

Different entity classes

The following entity_classes can be returned. Entity classes indicate how the numerals are formatted. In some

cases, the choice of class can be contextual and the class may not be what was expected (for example "2001"

may be a "cardinal" instead of "date"). The number of entity_classes may grow or shrink in the future.

N.B. Please note existing behaviour for English where numbers from zero to 10 (excluding where they are output

as a decimal/money/percentage) are output as words is unchanged.

Entity

Class
Formatting Behaviour

Spoken Word Form

Example

Written Form

Example

alphanum

A series of three or more

alphanumerics, where an alphanumeric

is a digit less than 10, a character or

symbol

triple seven five four 77754

cardinal

Any number greater than ten is

converted to numbers. Numbers ten or

below remain as words. Includes

negative numbers

nineteen 19

credit card

A long series of spoken digits less than

10 are converted to numbers. Support

for common credit cards

one one one one two

two two two three three

three three four four four

four

1111222233334444

date

Day, month and year, or a year on its

own. Any words spoken in the date are

maintained (including "the" and "of")

fifteenth of January

twenty twenty two

15th of January

2022

decimal
A series of numbers divided by a

separator
eighteen point one two 18.12

fraction Small fractions are kept as words

("half"), complex fractions are

three sixteenths 3/16

38

converted to numbers separated by "/"

money

Currency words are converted to

symbols before or after the number

(depending on the language)

twenty dollars $20

ordinal
Ordinals greater than 10 are output as

numbers
forty second 42nd

percentage
Numbers with a per cent have the per

cent converted to a % symbol
duecento percento 200%

span
A range expressed as "x to y" where x

and y correspond to another entity class

one hundred to two

hundred million pounds
100 to £200 million

time Times are converted to numbers eleven forty a m 11:40 a.m.

word
Entities that do not match a specific

class
hundreds hundreds

Output locale styling

Each language has a specific style applied to it for thousands, decimals and where the symbol is positioned for

money or percentages.

For example

English contains commas as separators for numbers above 9999 (example: "20,000"), the money symbol

at the start (example: "$10") and full stops for decimals (example: "10.5")

German contains full stops as separators for numbers above 9999 (example: "20.000"), the money

symbol comes after with a non-breaking space (example: "10 $") and commas for decimals (example:

"10,5")

French contains non-breaking spaces as separators for numbers above 9999 (example: "20 000"), the

money symbol comes after with a non-breaking space (example: "10 $") and commas for decimals

(example: "10,5")

Example output

Here is an example of a transcript requested with enable_entities set to true:

An entity that is "17th of January 2022", including spaces

The start and end times span the entire entity

An entity_class of date

The spoken_form is split into the following individual words: "seventeenth", "of", "January",

"twenty", "twenty", "two". Each word has its own start and end time

the written_form split into the following individual words: "17th", "of", "January", "2022". Each

word has its own start and end time

Note:

By default and when speaker diarization is enabled, speaker parameter is added per word within the

entity, spoken and written form

When channel diarization is enabled, channel parameter is only added on the results parent within

the entity and not included in spoken and written form

 "results": [

 {

39

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "17th of January 2022",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 3.14,

 "entity_class": "date",

 "spoken_form": [

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "seventeenth",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 1.41,

 "start_time": 0.72,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "of",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 1.53,

 "start_time": 1.41,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "January",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 2.04,

 "start_time": 1.53,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

40

 "content": "twenty",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 2.46,

 "start_time": 2.04,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "twenty",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 2.79,

 "start_time": 2.46,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.97,

 "content": "two",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 3.14,

 "start_time": 2.79,

 "type": "word"

 }

],

 "start_time": 0.72,

 "type": "entity",

 "written_form": [

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "17th",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 1.33,

 "start_time": 0.72,

 "type": "word"

 },

 {

 "alternatives": [

41

 {

 "confidence": 0.99,

 "content": "of",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 1.93,

 "start_time": 1.33,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "January",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 2.54,

 "start_time": 1.93,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "2022",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 3.14,

 "start_time": 2.54,

 "type": "word"

 }

]

 }

]

If enable_entities is set to false , the output is as below:

 "results": [

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "17th",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 1.33,

42

 "start_time": 0.72,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "of",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 1.93,

 "start_time": 1.33,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "January",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 2.54,

 "start_time": 1.93,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "2022",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 3.14,

 "start_time": 2.54,

 "type": "word"

 }

]

}

Batch Container Migration Guide

Overview

This is a guide for customers who are updating to V8.0.0 or later (October 2020). It documents changes in the

batch container, and how you, a customer, may need to reintegrate your batch container with any other systems. It

is provided in addition to our standard release notes and documentation pack.

43

As part of this upgrade, some V1 features that are no longer supported have been completely deprecated, and will

cease to work as announced in the v6.2.0 release.

In all cases, replacements are supported via our V2 input, and are documented in our Speech API Guide.

The changes below should show no loss of any feature or functionality as a result of the migration.

Scope

The scope of this document shows:

What changes you, the customer, must make to use the Speechmatics batch container v8.0.0 if you have

been using previous versions of the container

If you are still using deprecated V1 features, this document will show which ones are no longer supported,

and what you must use instead to ensure output

Examples of our V2 output, and how it differs from our V1 output

What changes have been made to licensing, and how you, the customer, must license a container prior to

using it

The scope of this document excludes

How to start the Batch Container - this is documented in our quick start guide

Our Speech API - this is documented in the Speech API guide

List of software packages used - this is covered in our release and attribution list

Recommendations for any custom workflows or integrations you have built

What has changed

License File

Previously Speechmatics built batch containers with their own license file integrated within the container for each

language required by a customer. For simplicity and replicability we have moved to a generic customer-agnostic

container for each language, with each customer now receiving a separate license file to use with the container(s)

they are licensed for.

Please note: The contents of the license file are confidential. They should be shared on the principles of least

privilege. Speechmatics is not responsible for how you handle, store, or share licensing information.

Speechmatics Support will provide you with a new license file. The license is a JSON file called license.json

and has the following JSON structure:

Item Description

Customer

name
This is your company's name

Id This is internal to Speechmatics

Is-Trial Whether the license is for a trial use of Speechmatics or not

Metadata What Features a container is licensed to use. These can include:

Speaker Diarization

Channel Diarization

Speaker Change

Batch Container use

44

Real-time container use

Language: any supported language

Language: A supported individual language (e.g. English)

NotValidAfter
The date after which the license expires and can no longer be used to run the container.

The date is in ISO format

ValidFrom The date from which this license is valid.

Signed Claims

Token

A unique reference number used to validate the license file when running the container.

Generated by Speechmatics

The values in this license file will reflect each customer's individual contract arrangement with Speechmatics.

An example license file is below:

{

 "contractid": 1,

 "creationdate": "2020-03-24 17:43:35",

 "customer": "Speechmatics",

 "id": "c18a4eb990b143agadeb384cbj7b04c3",

 "is_trial": true,

 "metadata": {

 "key_pair_id": 1,

 "request": {

 "customer": "Speechmatics",

 "features": [

 "MAPBA",

 "LANY"

],

 "isTrial": true,

 "notValidAfter": "2021-01-01",

 "validFrom": "2020-01-01"

 }

 },

 "signedclaimstoken": "example",

}

How this affects you

Previously the batch container was licensed by use of the environment variable LICENSE_KEY . This is no longer a

valid variable and will not license the product. Instead you may either license the product via the two methods

described below:

Volume mapping the license file into the container. Volume map the location of the license file into the

container when running transcription jobs, like the Configuration Object. Please see below for an example:

docker run -i -v $AUDIO_FILE:/input.audio -v $CONFIG_JSON:/config.json -v

/my_license.json:/license.json batch-asr-transcriber-en:8.0.0

Use the value of the ‘signed claims token’ from the license file and pass it as the value of the

LICENSE_TOKEN variable when running a transcription job. See an example of using LICENSE_TOKEN

below:

45

docker run -i -v $AUDIO_FILE:/input.audio -v $CONFIG_JSON:/config.json -e

LICENSE_TOKEN='example' batch-asr-transcriber-en:8.0.0

If you lose a license file or it is no longer secure, Speechmatics can generate a new one. Please contact

Speechmatics support if this is the case.

V1 Deprecation

In the Speechmatics container you can still process a media file for transcription without use of the V2

configuration object. This will generate our JSON v2 output without any alteration or changes to the text.

From the V8.0.0 release, the configuration file is now the only way by which you can modify the transcription

output in the Speechmatics container. If you want to use features such as diarization, punctuation overrides,

output locale etc. you must use the configuration object to request these features.

If you already do so, then you do not need to make any changes to how you use the container.

All JSON transcription output will now be in the V2.4 output.

As part of the v7.0.0 release support for V1 features was withdrawn. As part of this release all V1 features have

now since been removed. Where applicable, these have been replaced by options within the configuration object.

This includes the following:

V1 Item Type Replaced By

DIARIZE. Enables speaker diarization
environment

variable

Use the diarization:speaker parameter

within the configuration object

DIARISE. Enables speaker diarization
environment

variable

Use the diarization:speaker parameter

within the configuration object

CHANNEL_DIARISATION. enables channel

diarization on stereo files

environment

variable

Use the diarization:channel parameter

within the configuration object

CHANNEL_DIARISATION_LABELS. Provides

labels to different speakers when using

channel diarization

environemnt

variable

Replaced by the parameter

channel_diarization_labels in the

configuration object

LICENSE_KEY. used to license the batch

container

environment

variable
Replaced by LICENSE_TOKEN

/extra_words.txt. Used as a custom dictionary

to generate additional vocabulary objects
text file

Use the additional vocab parameter

within the configuration object to

generate a custom dictionary

/build_date. Documents the date the batch

container was built by
text file

Replaced by the new licensing file, and

no longer needed

/license_days. How many days the license has

to run
text file

Replaced by the new licensing file, and

no longer needed

Changes to Notifications

Notifications are still supported in the batch container as before. There are a few changes in how single and multi-

part notifications are generated and encoded, and this is noted below for integration purposes:

If you request transcript , this will now be output in the JSON-V2 format rather than the deprecated V1

JSON format

46

If you want to request an empty notification, you must specify contents to be blank by using [] . An

example is provided below

Notifications now have the charset=utf8 on all transcript types. Ensure that your workflow can support

this

For receiving notifications, Content-Type header's used to be set always to application/octet-

stream . This value now corresponds to actual content of the notification and is application/json in

case of JSON-v2 content, text/plain in case of an SRT contetn, and application/octet-stream

for TXT content

An example notification configuration that would generate a notification with no contents is shown below. This is a

change from the previous version of batch container.

{

 "notification_config": [{

 "url": "http://localhost:8080",

 "contents": []

 }]

}

