
1

Batch Container 9.0.1

2

Table of Contents
Batch Container

Important Notices

What's New

9.1.0

Known Limitations

Supported Platforms

Installation

Pre-requisites

Related Documentation

Supported Languages

Batch Container Quick Start Guide

System requirements

System requirements

Host recommended specs

AVX flags

Architecture

Supported Languages

Supported File Formats

Accessing the Image

Getting the Image

Software Repository Login

Pulling the Image

Licensing

Using the Container

Intermediate files

Determining success

Troubleshooting

Enabling Logging

Common Problems

Modifying the Image

Building an Image

Requirements for a custom image

Dockerfile

Additional Security Features

Custom Mapping Temporary Directories to run the Batch Container

Running a batch container as a non-root user

Running a Batch Container as a non-root user on Kubernetes

Batch Container API Guide

Transcription Output Format

Feature Usage

Configuration Object

Requesting an enhanced model

Enabling Logging for Usage Reporting

Speaker Separation (Diarization)

Speaker Diarization

Speaker diarization tuning

Speaker diarization post-processing

3

Speaker diarization timeout

Channel Diarization

Speaker Change Detection (beta feature)

Speaker Change Detection With Channel Diarization

Custom dictionary

Using the Shared Custom Dictionary Cache

Output Locale

Advanced punctuation

Notifications

How to generate multiple transcript formats

SubRip Subtitles

URL Fetching

How to track a file

Word Tagging

Profanity Tagging

Disfluency Tagging

Domain Language Packs

Full API Reference

config.json API Reference

transcription_config

fetch_data

speaker_diarization_config

notification_config

output_config

jobInfo reference

tracking metadata within the jobInfo file

Ability to run a container with multiple cores

Formatting Common Entities

Overview

Supported Languages

Using the enable_entities parameter

Configuration example

Different entity classes

Output locale styling

Example output

Batch Container Migration Guide

Overview

Scope

What has changed

License File

How this affects you

V1 Deprecation

Changes to Notifications

4

Batch Container

Important Notices

It is now necessary to use processors that support Advanced Vector Extensions 2 (AVX2) when running the

container in all scenarios in order to take advantage of latest performance optimisations.

It is also recommended when using the enhanced model to use hardware that supports the AVX512_VNNI flag for

optimal processing performance. The enhanced model also has increased compute requirements and will run

more slowly than the standard model. For more information please see the quick start guide.

What's New

9.1.0

New English finance domain language pack. Provides accuracy improvements when specific financial

jargon is spoken in your audio. Refer to documentation here for more details

New language Ukrainian (uk)

Speaker Diarization can now utilize multiple cores in parallel, significantly increasing transcription speed

and RTF. More information about parallel processing can be found here

16 Languages updated with additional punctuation marks for improved readability

The following languages now support (. ? , !): Bulgarian, Catalan, Czech, Greek, Finnish, Croatian,

Hungarian, Lithuanian, Latvian, Norwegian, Polish, Romanian, Slovak, Slovenian, Ukrainian,

Korean

Improved accuracy for French, including more data for Canadian French (fr-ca)

Improved accuracy for Portuguese, including more data for Brazilian Portuguese (pt-br)

Resolved an issue where a small number of files with multiple audio channels were mistakenly detected as

containing inverted audio, which lead to no transcription being returned. The check for inverted audio is

now more robust

Resolved an issue where auth headers for the fetch URL feature were not sent correctly

New parameter added for controlling Speaker Diarization sensitivity: speaker_sensitivity . Refer to

our documentation here for more details

Known Limitations

Issue

ID
Summary Detailed Description and Possible Workarounds

REQ-

1409

Proteus HCL with <unk>

causes out of memory error

A custom dictionary list that contains the word '' causes the

worker to crash.

REQ-

10160

Advanced punctuation for

Spanish (es) does not

contain inverted marks.

Inverted marks [¿ ¡] are not currently available for Spanish

advanced punctuation.

REQ-

10627

Double full stops when

acronym is at the end of the

sentence

If there is an acronym at the end of the sentence, then a double

full stop will be output, for example: "team G.B.."

REQ-

10634

Putting "-" as an item in

additional vocab

configuration will cause the

container to fail

Do not enter just a "-" on its own in Custom Dictionary either as

an additional vocab item or in the sounds_like property. Hyphens

are still supported when entered as part of phrases or words

http://localhost:61825/en/batch-container/speech-api/#domain-language-packs
https://docs.speechmatics.com/en/batch-container/speech-api/parallel-processing/#ability-to-run-a-container-with-multiple-cores
http://localhost:61825/en/batch-container/speech-api/#speaker-diarization-tuning

5

Supported Platforms

Docker (17.06.0+) running on Ubuntu, Debian, Fedora or CentOS.

Installation

Pull the Batch Container Docker image from the Speechmatics Docker repository.

Pre-requisites

You have a login (URL, username and password) for the Speechmatics Docker repository, and have a Docker

environment (version 17.06.0 or above) running.

Related Documentation
Speechmatics Batch Container Quick Start Guide version 9.0.1

Speechmatics Batch Container API Guide version 9.0.1

Supported Languages

Below is the complete list of languages supported by Speechmatics.

Speechmatics takes a global first approach to our languages. In a single language pack we aim to support many

different accents and dialects. This simplifies your workflow when selecting which language to use, not requiring

you to know which accent is being spoken in your audio up-front. With this approach we still achieve very high

accuracy compared to accent specific language packs.

Language ISO Code

Arabic ar

Bulgarian bg

Catalan ca

Mandarin cmn

Czech cs

Danish da

German de

Greek el

Global English en

Global Spanish es

Finnish fi

French fr

Hindi hi

Croatian hr

Hungarian hu

Indonesian id

6

Italian it

Japanese ja

Korean ko

Lithuanian lt

Latvian lv

Malay ms

Dutch nl

Norwegian no

Polish pl

Portuguese pt

Romanian ro

Russian ru

Slovakian sk

Slovenian sl

Swedish sv

Turkish tr

Ukrainian uk

Cantonese yue

Container images are labelled using the following scheme, where language codes adhere the ISO-639 standard:

batch-asr-transcriber-<language>:<version>

For example,

batch-asr-transcriber-en:9.0.1

Batch Container Quick Start Guide
This guide will walk you through the steps needed to deploy the Speechmatics Batch Container ready for

transcription.

Check system requirements

Pull the Docker Image

Run the Container

After these steps, the Docker Image can be used to create containers that will transcribe audio files. More

information about using the Speechmatics container transcription service is detailed in the Speechmatics

Container API guide.

System requirements

7

Speechmatics containerized deployments are built on the Docker platform. In order to operate the containers, the

following requirements will need to be met.

System requirements

An individual Docker image is required for each language transcription is required within. A single image can be

used to create and run multiple containers concurrently, each running container will require the following

resources:

{{ book.requirements.cpus }} vCPU

{{ book.requirements.memory }} RAM

{{ book.requirements.storage }} hard disk space

If you are using the enhanced model, it is recommended to use the upper limit of the RAM recommendations

Please Note: When using the parallel processing functionality, of the batch container, this will require more

resource due to the intensive memory required. When using parallel processing, we recommend using (NxRAM

requirements) where N is the number of cores intended to be used for parallel processing. So if 2 cores were

required for parallel processing, the RAM requirements would be up to 10GB

Host recommended specs

The host machine requires a processor with following microarchitecture specification to run at expected

performance:

If using the standard model offering at least the Broadwell Class is required

If using the enhanced model offering at least the CascadeLake class is required

It is also recommended if using the enhanced model that the hardware supports the AVX512_VNNI flag, as

this will greatly improve transcription processing speed

Examples of this among popular hosting providers include the Microsoft Azure DSV-4 class, and

the Amazon M5n EC2 server class

Disabling hyperthreading when running the enhanced model can also improve transcription

speed. How to do so when running on Amazon Web Services is shown here, and for Microsoft

Azure please see here

AVX flags

Advanced Vector Extensions (AVX) are necessary to allow Speechmatics to carry out transcription.

For the enhanced model, it is recommended to use the AVX512_VNNI flag, which will substantially

improve transcription processing speed.

For the standard model, it is necessary to use at least a processor that supports Advanced Vector

Extensions 2 (AVX2).

You should also ensure your hypervisor is enabled to use AVX2.

Architecture

Each container:

Processes one input file and outputs a resulting transcript in a predefined language in a number of

supported outputs

The output can be altered by means of a configuration object passed with the file

These outputs and relevant metadata are described in more detail in the Speech API guide

Is licensed for languages and speech features which vary depending upon each individual contract

Speech features are described after the Speech API guide

Requires either a license file or license token before transcription starts.

Can run in a mode that parallelises processing across multiple cores

https://aws.amazon.com/blogs/compute/disabling-intel-hyper-threading-technology-on-amazon-linux/
https://docs.microsoft.com/en-us/azure/virtual-machines/mitigate-se#linux

8

Supports input file sizes up to 2 hours in length or 4GB in size

Treats all data is transitory. Once a container completes its transcription it removes all record of the

operation.

Supported Languages

The following languages are supported:

Language Language Code

Arabic (ar)

Bulgarian (bg)

Cantonese (yue)

Catalan (ca)

Croatian (hr)

Czech (cs)

Danish (da)

Dutch (nl)

English (en)

Finnish (fi)

French (fr)

German (de)

Greek (el)

Hindi (hi)

Hungarian (hu)

Italian (it)

Indonesian (id)

Japanese (ja)

Korean (ko)

Latvian (lv)

Lithuanian (lt)

Malay (ms)

Mandarin (cmn)

Norwegian (no)

Polish (pl)

Portuguese (pt)

Romanian (ro)

9

Russian (ru)

Slovakian (sk)

Slovenian (sl)

Spanish (es)

Swedish (sv)

Turkish (tr)

Please also note any languages outside this list are not explicitly supported. Only one language can be processed

within each request. Each language above also has a two-letter ISO639-1 code that must be provided for any

transcription request.

Supported File Formats

Only the following file formats are supported:

aac

amr

flac

m4a

mov

mp3

mp4

mpeg

ogg

wav

In addition, multiple instances of the container can be run on the same Docker host. This enables scaling of a

single language or multiple-languages as required.

Accessing the Image

The Speechmatics Docker image is obtained from the Speechmatics Docker repository (jfrog.io). If you do not

have a Speechmatics software repository account or have lost your details, please contact Speechmatics support

support@speechmatics.com.

The latest information about the containers can be found in the solutions section of the support portal. If a

support account is not available or the Containers section is not visible in the support portal, please contact

Speechmatics support support@speechmatics.com for help.

Prior to pulling any Docker images, the following must be known:

Speechmatics Docker URL – provided by the Speechmatics Support team

Language Code – the ISO language code (for example fr for French)

LICENSE_TOKEN - The value of the signed claims token which is used to validate the license file. This is

required to run the Container. Speechmatics Support will provide this within the license file generated for

each customer

TAG – which is used to identify the image version

Getting the Image

After gaining access to the relevant details for the Speechmatics software repository, follow the steps below to

login and pull the Batch Container image(s) required.

mailto:support@speechmatics.com
https://support.speechmatics.com/
mailto:support@speechmatics.com

10

Software Repository Login

Ensure the Speechmatics Docker URL and software repository username and password are available. The endpoint

being used will require Docker to be installed. For example:

docker login https://speechmatics-docker-public.jfrog.io

You will be prompted for username and password. If successful, you will see the response:

Login Succeeded

If unsuccessful, please verify your credentials and URL. If problems persist, please contact Speechmatics support.

Pulling the Image

To pull the Batch Container image to the local environment follow the instructions below. Each supported language

pack comes as a different Docker image, so the process will need to be repeated for each language pack required.

Example: pulling Global English (en) with the 9.1.0 TAG:

docker pull speechmatics-docker-public.jfrog.io/batch-asr-transcriber-en:9.1.0

Example: pulling the Spanish (es) model with the 9.1.0 TAG:

docker pull speechmatics-docker-public.jfrog.io/batch-asr-transcriber-es:9.1.0

The image will start to download. This could take a while depending on your connection speed.

Note: Speechmatics require all customers to cache a copy of the Docker image(s) within their own environment.

Please do not pull directly from the Speechmatics software repository for each deployment.

As of Feb 2021, all Speechmatics containers are built using Docker Buildkit. This should not impact your internal

management of the Speechmatics Container. If you use JFrog to host the Speechmatics container there may be

some UI issues see here, but these are cosmetic and should not impact your ability to pull and run the container. If

your internal registry uses Nexus and self-signed certificates, please make sure you are on Nexus version 3.15 or

above or you may encounter errors.

Licensing

You should have received a confidential license file from Speechmatics containing a token to use to license your

container. The contents of the file received should look similar to this:

{

 "contractid": 1,

 "creationdate": "2020-03-24 17:43:35",

 "customer": "Speechmatics",

 "id": "c18a4eb990b143agadeb384cbj7b04c3",

 "is_trial": true,

 "metadata": {

 "key_pair_id": 1,

 "request": {

 "customer": "Speechmatics",

 "features": [

 "MAPBA",

 "LANY"

],

 "isTrial": true,

https://docs.docker.com/develop/develop-images/build_enhancements/
https://www.jfrog.com/jira/browse/RTFACT-20649
https://docs.docker.com/develop/develop-images/build_enhancements/

11

 "notValidAfter": "2021-01-01",

 "validFrom": "2020-01-01"

 }

 },

 "signedclaimstoken": "example",

}

The validFrom and notValidAfter keys in the license file specify the start and end dates for the validity of

your license. The license is valid from 00�00 UTC on the start date to 00�00 UTC on the expiry date. After the

expiry date, the container will continue to run but will not transcribe audio. You should apply for a new license

before this happens.

Licensing does not require an internet connection.

There are two ways to apply the license to the container.

As a volume-mapped file

The license file should be mapped to the path /license.json within the container. For example:

docker run ... -v /my_license.json:/license.json:ro batch-asr-transcriber-en:9.1.0

As an environment variable

Setting an environment variable named LICENSE_TOKEN is also a valid way to license the container. The contents

of this variable should be set to the value of the signedclaimstoken from within the license file.

For example, copy the signedclaimstoken from the license file (without the quotation marks) and set the

enviroment variable as below. The token example is not a full example:

docker run ... -e LICENSE_TOKEN=eyJhbGciOiJ... batch-asr-transcriber-en:9.1.0

There should be no reason to do this, but if both a volume-mapped file and an environment variable are provided

simultaneously then the volume-mapped file will be ignored.

Using the Container

Once the Docker image has been pulled into a local environment, it can be started using the Docker run

command. More details about operating and managing the container are available in the Docker API

documentation.

There are two different methods for passing an audio file into a container:

STDIN: Streams audio file into the container though the standard command line entry point

File Location: Pulls audio file from a file location

Here are some examples below to demonstrate these modes of operating the containers.

Example 1: passing a file using the cat command to the Spanish (es) container

cat ~/$AUDIO_FILE | docker run -i \

 -e LICENSE_TOKEN=eyJhbGciOiJ... \

 batch-asr-transcriber-es:9.1.0

Example 2: pulling an audio file from a mapped directory into the container

docker run -i -v ~/$AUDIO_FILE:/input.audio \

 -e LICENSE_TOKEN=eyJhbGciOiJ... \

https://docs.docker.com/engine/api/latest

12

 batch-asr-transcriber-es:9.1.0

NOTE: the audio file must be mapped into the container with :/input.audio

The Docker run options used are:

Name Description

--env, -e Set environment variables

--interactive , -i Keep STDIN open even if not attached

--volume , -v Bind mount a volume

See Docker docs for a full list of the available options.

Both the methods will produce the same transcribed outcome. STDOUT is used to provide the transcription in a

JSON format. Here's an example:

{

 "format": "2.7",

 "metadata": {

 "created_at": "2020-06-30T15:43:50.871Z",

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "diarization": "none",

 "additional_vocab": [

 {

 "content": "Met Office"

 },

 {

 "content": "Fitzroy"

 },

 {

 "content": "Forties"

 }

]

 }

 },

 "results": [

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "Are",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 3.61,

 "start_time": 3.49,

 "type": "word"

 },

 {

 "alternatives": [

https://docs.docker.com/engine/reference/commandline/run/

13

 {

 "confidence": 1.0,

 "content": "on",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 3.73,

 "start_time": 3.61,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "the",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 3.79,

 "start_time": 3.73,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "rise",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 4.27,

 "start_time": 3.79,

 "type": "word"

 }

]

}

Intermediate files

The intermediate files created during the transcription are stored in /home/smuser/work . This is the case

whether running the container as a root or non-root user.

Determining success

The exit code of the container will determine if the transcription was successful. There are two exit code

possibilities:

Exit Code == 0 : The transcript was a success; the output will contain a JSON output defining the

transcript (more info below)

Exit Code != 0 : the output will contain a stack trace and other useful information. This output should be

used in any communication with Speechmatics support to aid understanding and resolution of any

problems that may occur

14

Troubleshooting

Enabling Logging

If you are seeing problems then we recommend that you enable logging and open a support ticket with

Speechmatics support: support@speechmatics.com.

The following example shows how to enable logging, using the -stderr argument to output the logs to stderr :

 docker run --rm -e SM_JOB_ID=123 -e SM_LOG_DIR=/logs \

-v ~/$AUDIO_FILE:/input.audio \

-e LICENSE_TOKEN=f787b0051e2768b1f619d75faab97f23ee9b7931890c05f97e9f550702 \

batch-asr-transcriber-en:9.1.0 \

-stderr

To store the output of logs, add two environment variables:

SM_JOB_ID : - a job id, for example: 1

SM_LOG_DIR : - the directory inside the container where to write the logs, for example: /logs

When raising a support ticket it is normally easier to write the log output to a specific file. You can do this by

creating a volume mount where the logs will be accessible from after the container has finished. Before running

the container you need to create a directory for the log file and ensure it has the correct permissions. In this

example we use a local logs directory to store the output of the log for a job with ID 124:

mkdir -p logs/124 /

sudo chown -R nobody:nogroup logs/

sudo chmod -R a+rwx logs/

then

docker run --rm -v ${PWD}/logs:/logs -e SM_JOB_ID=124 -e SM_JOB_ID=/logs \

-v ~/sm_audio.wav:/input.audio \

-e LICENSE_TOKEN=f787b0051e2768b1f619d75faab97f23ee9b7931890c05f97e9f550702 \

 batch-asr-transcriber-en:9.1.0

tail logs/124/sigurd.log

Common Problems

There are occassions where the transcription container will fail to transcribe the media file provided and will exit

without error code 0 (success). Speechmatics heavily advise enabling logging (see instruction above). The logs

will show some of the reasons for the failed job especially when multiple errors can cause the same error code.

Below are some errors with suggestions and how they can be revolved.

Error

Code
Error Resolution

1
“err: signal: illegal

instruction”

This means that the models couldnʼt be loaded within the container.

Please ensure that the host thatʼs running the Docker engine has an

AVX compatible CPU.

The following can also be done inside the container to check that AVX

is listed in the CPU flags.

$ docker run -it --entrypoint /bin/bash batch-asr-transcriber-en:9.1.0

$ cat /proc/cpuinfo | grep flags

mailto:support@speechmatics.com

15

1 “Unable to set up

logging”

This can occur when a directory is volume mapped into the containers

and a log file cannot be created into that directory.

Example command to map in a tmp directory inside the container to

/xxx path:

$ docker run --rm -e SM_LOG_DIR=/xxx -e SM_JOB_ID=1 -v

$PWD/tmp:/xxx batch-asr-transcriber-en:9.1.0

1 “/input.audio is not valid”
If volume mapping the file into the container, ensure that a valid audio

file is being mapped in.

1
“failed to get sample

rate”

The sample rate from the audio file that was passed for recognition

did not have a sample rate. Check the audio file is valid and that a

sample rate can be read.

The following ffmpeg can be used to identify it there is a valid sample

rate:

$ ffmpeg -i /home/user/example.wav

1 “exit status 1”

If the container is memory (RAM) starved it can quit during the

transcription process. Verify the minimum resource (CPU and RAM)

requirements are being assigned to a transcription container.

The inspect command in docker can be useful to identify if the lack of

memory shutdown the container. Look out for the “OOMKilled” value.

Here is an example.

. $ docker inspect --format='{{json .State}}' $containerID

1

"License Error: illegal

base64 data at input

byte $NUMBER

The license token value has been truncated or otherwise altered from

the initial value generated. Please ensure that you have copied token

value correctly or that the license file is not corupt

1

"ERROR sentryserver

could not load license:

stat /license.json: no

such file or directory"

The license file or license token has not been passed when attempting

to run the container. Please ensure that the license file or license

token value is passed as documented

2

--parallel/-parallel:

invalid check_parallel

value: '0'

If using the parallel option to speed up the processing time on files

more than 5 minutes in length the -–parallel switch needs to have an

integer at least 1. A non-zero value must be provided if the parallel

command is to be used.

The example below shows a valid command:

$ docker run -i –v /home/user/config.json:/config.json -v

/home/user/example.wav:/input.audio -e

LICENSE_TOKEN=$TOKEN_VALUE batch-asr-transcriber-en:9.1.0 --

parallel 2

If you still continue to face issues, please contact Speechmatics support support@speechmatics.com.

Modifying the Image

mailto:support@speechmatics.com

16

Building an Image

Using STDIN to pass files in and obtain the transcription may not be sufficient for all use cases. It is possible to

build a new Docker Image that will use the Speechmatics Image as a layer if required for your specific workflow. To

include the Speechmatics Docker Image inside another image, ensure to add the pulled Docker image into the

Dockerfile for the new application.

Requirements for a custom image

To ensure the Speechmatics Docker image works as expected inside the custom image, please consider the

following:

Any audio that needs to be transcribed must to be copied to a file called /input.audio inside the

running container

To initiate transcription, call the application pipeline . The pipeline will start the transcription service

and use /input.audio as the audio source.

When running pipeline , the working directory must be set to /opt/orchestrator , using either the

Dockerfile WORKDIR directive, the cd command or similar means.

Once pipeline finishes transcribing, ensure you move the transcription data outside the container

Dockerfile

To add a Speechmatics Docker image into a custom one, the Dockerfile must be modified to include the full image

name of the locally available image.

Example: Adding Global English (en) with tag 9.1.0 to the Dockerfile

FROM batch-asr-transcriber-en:9.1.0

ADD download_audio.sh /usr/local/bin/download_audio.sh

RUN chmod +x /usr/local/bin/download_audio.sh

CMD ["/usr/local/bin/download_audio.sh"]

Once the above image is built, and a container instantiated from it, a script called download_audio.sh will be

executed (this could do something like pulling a file from a webserver and copying it to /input.audio before

starting the pipeline application). This is a very basic Dockerfile to demonstrate a way of orchestrating the

Speechmatics Docker Image.

NOTE: For support purposes, it is assumed the Docker Image provided by Speechmatics has been unmodified. If

you experience issues, Speechmatics support will require you to replicate the issues with the unmodified Docker

image e.g. batch-asr-transcriber-en:9.1.0

Additional Security Features

This section documents addition measures you can take to run the Batch Container where there are restrictive

requirements on data storage or user access.

Custom Mapping Temporary Directories to run the Batch Container

Users may wish to run the Batch Container in an environment where they cannot or do not want to write anything

to disk, and instead use temporary storage like tmpfs or ramfs to ensure regulatory compliance. The Batch

Container supports mounting temporary directories for the storage of all intermediate files created during

transcription, as well as mounting the directories where input, output and job configuration files are placed. Files

can also be locally retrieved from by using the fetch_url functionality in the configuration object.

Speechmatics also supports the --job-config variable to specify the location of the configuration object. The

job config location must specify the location in the container at which the config file can be found. If this too

17

needs to be in a temporary directory (e.g. tmp), rather than tmpfs this must be a volume from a host machine

in which the configuration object can be found.

An example is below, where the intermediate files and configuration object are in temporary storage. Please note

the --job-config argument must come after the image name

docker run --rm -i \

--read-only --tmpfs /home/smuser \

-v <path/to/dir/in/host/containing/config.json>:/tmp \

-e LICENSE_TOKEN=$TOKEN_VALUE \

batch-asr-transcriber-en:9.1.0 \

--job-config /tmp/config.json

This example sets up a tmpfs for intermediate files created by transcription, which means that all such files are

written to transient storage, and not to disk. The configuration object is mounted in a retrievable folder in tmp .

An alternative is to use tmp as tmpfs and then mount an additional read-only volume in an path inside the

container in which the config can be found

docker run --rm -i \

--read-only --tmpfs /home/smuser --tmpfs /tmp \

-v <path/to/dir/in/host/containing/config.json>:/configs_dir:ro \

-e LICENSE_TOKEN=$TOKEN_VALUE \

batch-asr-transcriber-en:9.1.0 \

--job-config /example_configs_dir/config.json

If the Container is run using Kubernetes, users can use the emptyDir to mount tmpfs in the needed directories

(/home/smuser and /tmp). Configuration files can also be stored in an emptyDir if any of the containers in the pod

is able to put it there. This could be achieved in deployment software like Kubernetes by using an initContainer or

using the sidecar pattern o fetch the configuration from its original location and storing it in the emptyDir

volume. Then the transcriber should be called with the --job-config argument pointing to the path in the

emptyDir volume in which the config was stored..

Users can also pull files from temporary locations using fetch_url functionality Below is a configuration

example:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en"

 },

 "fetch_data": {

 "url": "file:///tmp/$FILENAME.wav"

 }

}

Running a batch container as a non-root user

There are some use cases where you may not be able to run the batch container as a root user. This may be

because you are working in a hosting environment that mandates the use of a named user rather than root.

You must start the container with the command docker run –user $USERNUMBER:$GROUPID . User number and

group ID are non-zero numerical values from a value of 1 up to a value of 65535. So a valid example would be:

docker run -user 1000:3000.

https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://www.oreilly.com/library/view/designing-distributed-systems/9781491983638/ch02.html

18

Getting Transcription Output as a non-root user

If you take transcription via the default STDOUT, then this will not change as a non-root user. An example is below:

docker run -u 1020:4000 \

 -v /Users/$USER/work/pipeline/mydev/config.json:/config.json \

 -v /Users/$USER/work/pipeline/mydev/input.audio:/input.audio \

 ${IMAGE_NAME}

If you want to map the output to a specific directory, you must volume map a directory to which a non-root user

would have access.

Running a Batch Container as a non-root user on Kubernetes

Please Note The examples below do not constitute an explicit recommendation to run as non-root user, merely a

guideline on how to do so with Kubernetes only where this is an unavoidable requirement.

If you require named users to be deployed on Kubernetes Pods, you must set the following Security Config. The

user and group must correspond to the user and group you use when starting the container

securityContext:

 runAsUser: {non-zero numerical value between 0 and 65535}

 runAsGroup: {non-zero numerical value between 0 and 65535}

There is more information on how to configure security settings on Kubernetes pods here

Some Kubernetes deployments may mandate the use of PodSecurity Admissions Controllers. These provide

stricter security requirements. More information on them can be found here. If your deployment does require this

set up, here is an example configuration that would allow you to carry out transcription as a non-root user.

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: restricted

 annotations:

 seccomp.security.alpha.kubernetes.io/allowedProfileNames:

'docker/default,runtime/default'

 apparmor.security.beta.kubernetes.io/allowedProfileNames: 'runtime/default'

 seccomp.security.alpha.kubernetes.io/defaultProfileName: 'runtime/default'

 apparmor.security.beta.kubernetes.io/defaultProfileName: 'runtime/default'

spec:

 privileged: false

 # Required to prevent escalations to root.

 allowPrivilegeEscalation: false

 requiredDropCapabilities:

 - ALL

 # Allow core volume types.

 volumes:

 - 'configMap'

 - 'emptyDir'

 - 'projected'

 - 'secret'

 - 'downwardAPI'

 # Assume that persistentVolumes set up by the cluster admin are safe to use.

 - 'persistentVolumeClaim'

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

19

 hostNetwork: false

 hostIPC: false

 hostPID: false

 runAsUser:

 # Require the container to run without root privileges.

 rule: 'MustRunAsNonRoot'

 seLinux:

 # This policy assumes the nodes are using AppArmor rather than SELinux.

 rule: 'RunAsAny'

 supplementalGroups:

 rule: 'MustRunAs'

 ranges:

 # Forbid adding the root group.

 - min: 1

 max: 65535

 fsGroup:

 rule: 'MustRunAs'

 ranges:

 # Forbid adding the root group.

 - min: 1

 max: 65535

 readOnlyRootFilesystem: false

Batch Container API Guide
This guide will walk you through using Speechmatics' v2.7 API in order to use the Speechmatics ASR Batch

Container.

For information on getting started and accessing the Speechmatics software repository please refer to

Speechmatics Container Quick Start Guide.

Transcription Output Format

The transcript output will consist of:

JSON format version (examples can be seen in the sections below)

V2.7 - used when the config.json configuration object is used (only supported approach)

Diarization information

Channel Diarization - channel labelling with relevant transcription in enclosed block

Speaker Diarization - identifying who is currently talking by labelling words in the JSON output

with a label for each unique speaker

Speaker Change - identifying when a different speaker begins talking as an element in the JSON

output, but not attempting to label words with their speaker

Speaker Change with Channel Diarization - Channel labelling with relevant transcription in

enclosed block, speaker change elements additionally output at relevant sections

No diarization

Header information to show license expiry date

A full stop to delimit sentences, irrespective of language being transcribed

A word, confidence and timing information for each transcribed word

Transcription output additionally in txt or srt format

Notification information that can be used to generate callbacks

Metadata about the job that was submitted as part of an optional jobInfo file

Additional metadata about entities available when requested

20

Feature Usage

This section explains how to use additional features beyond plain transcription of speech to text.

As part of the Speechmatics' V2.7 API, you must always use the config.json object unless otherwise specified

in examples below

Please Note the V1 API is no longer maintained. Using environmental variables to call speech features is neither

recommended nor supported except where this document explicitly designates.

Configuration Object

The configuration object allows you to process a file for transcription and optionally use speech features of the

container. It is a JSON structure that is passed as a separate volume-mapped file (mapped to /config.json)

when carrying out transcription. Here is an example of a command to run the container :

docker run -i -v ~/Projects/ba-test/data/audio.wav:/input.audio \

 -v ~/tmp/config.json:/config.json \

 batch-asr-transcriber-en:9.1.0

The configuration object is mapped to ~/tmp/config.json . The command requests transcription in English. for

the audio.wav . Below is an example of a config.json file where transcription in English is requested, with no

additional speech features.

{

 "type": "transcription",

 "transcription_config": {

 "language": "en"

 }

}

You must always request:

the type of request you want. This is always transcription

The transcription_config

the language of the transcription output you want within the transcription_config . The

language code must be in a two-digit ISO639-1 format (e.g. if you want a file in English, the

language code is always "en").

N.B* Each container can only output one language. Requests for a language other than the one supported

will result in an error

The configuration information requested within the config.json file will be shown in the JSON output before

any transcript:

{

 "format": "2.7",

 "metadata": {

 "created_at": "2019-03-01T17:21:34.002Z",

 "type": "transcription",

 "transcription_config": {

 "language": "en"

 }

 }

Requesting an enhanced model

21

Speechmatics supports two different models within each language pack; a standard or an enhanced model. The

standard model is the faster of the two, whilst the enhanced model provides a higher accuracy, but a slower

turnaround time.

The enhanced model is a premium model. Please contact your account manager or Speechmatics if you would like

access to this feature. You will require a new license which will provide you access to the enhanced model.

An example of requesting the enhanced model is below

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "operating_point": "enhanced"

 }

}

Please note: standard , as well as being the default option, can also be explicitly requested with the

operating_point parameter.

Enabling Logging for Usage Reporting

The enhanced model is a premium offering. Ensure when capturing information on audio duration for billing

information that you capture separately how many hours were processed with the standard model, and how many

hours were captured with the enhanced model.

Speaker Separation (Diarization)

Speechmatics offers four different modes for separating out different speakers in the audio:

Type Description Use Case

speaker

diarization

Aggregates all audio channels into a

single stream for processing and picks

out unique speakers based on acoustic

matching.

Used in cases where there are multiple speakers

embedded in the same audio recording and it's

required to understand what each unique

speaker said.

channel

diarization

Transcribes each audio channel

separately and treats each channel as a

unique speaker.

Used when it's possible to record each speaker

on separate audio channels.

speaker

change

(beta)

Provides the point in transcription when

there is believed to be a new speaker.

Used for when you just need to know the

speaker has changed usually in a real-time

application.

channel

diarization

& speaker

change

Transcribes each audio channel

separately and within each channel

provides the point when there is believed

to be a new speaker.

Used when it's possible to record some speakers

on a separate audio channel, but some channels

there are multiple speakers.

Each of these modes can be enabled by using the diarization config. The following are valid values:

The default value is none - e.g. the transcipt will not be diarized.

Type Config Value

speaker diarization speaker

22

channel diarization channel

speaker change speaker_change

channel diarization & speaker change channel_and_speaker_change

All of the diarization options are requested through the config.json object.

Speaker Diarization

Speaker diarization aggregates all audio channels into a single stream for processing, and picks out different

speakers based on acoustic matching.

By default the feature is disabled. To enable speaker diarization the following must be set when you are using the

config object:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "diarization": "speaker"

 }

}

When enabled, every word and punctuation object in the output results will be a given "speaker" property

which is a label indicating who said that word. There are two kinds of labels you will see:

S# - S stands for speaker and the # will be an incrementing integer identifying an individual speaker. S1

will appear first in the results, followed by S2 and S3 etc.

UU - Diarization is disabled or individual speakers cannot be identified. UU can appear for example if

some background noise is transcribed as speech, but the diarization system does not recognise it as a

speaker.

Note: Enabling diarization increases the amount of time taken to transcribe an audio file. In general we expect

diarization to take roughly the same amount of time as transcription does, therefore expect the use of diarization

to roughly double the overall processing time.

The example below shows relevant parts of a transcript with 3 speakers. The output shows the configuration

information passed in the config.json object and relevant segments with the different speakers in the JSON

output. Only part of the transcript is shown here to highlight how different speakers are displayed in the output.

"format": "2.7",

"metadata": {

 "created_at": "2020-07-01T13:26:48.467Z",

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "diarization": "speaker"

 }

 },

 "results": [

 {

 "alternatives": [

 {

 "confidence": 0.93,

 "content": "hello",

23

 "language": "en",

 "speaker": "S1"

 }

],

 "end_time": 0.51,

 "start_time": 0.36,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "hi",

 "language": "en",

 "speaker": "S2"

 }

],

 "end_time": 12.6,

 "start_time": 12.27,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "good",

 "language": "en",

 "speaker": "S3"

 }

],

 "end_time": 80.63,

 "start_time": 80.48,

 "type": "word"

 }

In our JSON output, start_time identifies when a person starts speaking each utterance and end_time

identifies when they finish speaking.

Speaker diarization tuning

The sensitivity of the speaker detection is set to a sensible default that gives the optimum performance under

most circumstances. However, you can change this value based on your specific requirements by using the

speaker_sensitivity setting in the speaker_diarization_config section of the job config object, which

takes a value between 0 and 1 (the default is 0.5). A higher sensitivity will increase the likelihood of more unique

speakers returning. For example, if you see fewer speakers returned than expected, you can try increasing the

sensitivity value, or if too many speakers are returned try reducing this value. It's not guaranteed to change since

several factors can affect the number of speakers detected. Here's an example of how to set the value:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "diarization": "speaker",

 "speaker_diarization_config": {

 "speaker_sensitivity": 0.6

24

 }

 }

}

Speaker diarization post-processing

To enhance the accuracy of our speaker diarization, we make small corrections to the speaker labels based on the

punctuation in the transcript. For example if our system originally thought that 9 words in a sentence were spoken

by speaker S1, and only 1 word by speaker S2, we will correct the incongruous S2 label to be S1. This only works if

punctuation is enabled in the transcript.

Therefore if you disable punctuation, for example by removing all permitted_marks in the

punctuation_overrides section of the config.json then expect the accuracy of speaker diarization to vary

slightly.

Speaker diarization timeout

Speaker diarization will timeout if it takes too long to run for a particular audio file. Currently the timeout is set to 5

minutes or 0.5 * the audio duration; whichever is longer. For example, with a 2 hour audio file the timeout is 1 hour.

If a timeout happens the transcript will still be returned but without the speaker labels set.

If the diarization does timeout you will see an ERROR message in the logs that looks like this:

Speaker diarization took too long and timed out (X seconds).

If a timeout occurs then all speaker labels in the output will be labelled as UU.

Under normal operation we do not expect diarization to timeout, but diarzation can be affected by a number of

factors including audio quality and the number of speakers. If you do encounter timeouts frequently then please

get in contact with Speechmatics support.

Channel Diarization

Channel diarization allows individual channels in an audio file to be labelled. This is ideal for audio files with

multiple channels (up to 6) where each channel is a unique speaker.

By default the feature is disabled. To enable channel diarization the following must be set when you are using the

config object:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "diarization": "channel"

 }

}

The following illustrates an example configuration to enable channel diarization on a 2-channel file that will use

labels Customer for channel 1 and Agent for channel 2:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "diarization": "channel",

 "channel_diarization_labels": ["Customer", "Agent"]

 }

}

25

For each named channel, the words will be listed in its own labelled block, for example:

 {

 "format": "2.7",

 "metadata": {

 "created_at": "2020-07-01T14:11:43.534Z",

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "diarization": "channel",

 "channel_diarization_labels": ["Customer", "Agent"]

 }

 },

 "results": [

 {

 "alternatives": [

 {

 "confidence": 0.87,

 "content": "Hello",

 "language": "en"

 }

],

 "channel": "Customer",

 "end_time": 14.34,

 "start_time": 14.21,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.87,

 "content": "how",

 "language": "en"

 }

],

 "channel": "Agent",

 "end_time": 14.62,

 "start_time": 14.42,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.87,

 "content": "can",

 "language": "en"

 }

],

 "channel": "Agent",

 "end_time": 15.14,

 "start_time": 14.71,

 "type": "word"

 },

26

 {

 "alternatives": [

 {

 "confidence": 0.79,

 "content": "I",

 "language": "en"

 }

],

 "channel": "Agent",

 "end_time": 16.71,

 "start_time": 16.3,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.67,

 "content": "help",

 "language": "en"

 }

],

 "channel": "Agent",

 "end_time": 10.39,

 "start_time": 10.17,

 "type": "word"

 }

Note:

Transcript output is provided sequentially by channel. So if you have two channels, all of channel 1 would

be output first, followed by all of channel 2, and so on

If you specify channel as a diarization option, and do not assign channel_diarization_labels then default

labels will be used (channel_1, channel_2 etc)

Spaces cannot be used in the channel labels

Speaker Change Detection (beta feature)

This feature allows changes in the speaker to be detected and then marked in the transcript. It does not provide

information about whether the speaker is the same as one earlier in the audio.

By default the feature is disabled. The config used to request speaker change detection looks like this:

{

 "type": "transcription",

 "transcription_config": {

 "diarization": "speaker_change",

 "speaker_change_sensitivity": 0.8

 }

}

Note: Speaker change is only visible in the JSON V2 output, so make sure you use the json-v2 format when you

retrieve the transcript.

The speaker_change_sensitivity property, if used, must be a numeric value between 0 and 1. It indicates to

the algorithm how sensitive to speaker change events you want to make it. A low value will mean that very few

changes will be signalled (with higher possibility of false negatives), whilst a high value will mean you will see

27

more changes in the output (with higher possibility of false positives). If this property is not specified, a default of

0.4 is used.

Speaker change elements appear in resulting JSON transcript results array look like this:

{

 "type": "speaker_change",

 "start_time": 0.55,

 "end_time": 0.55,

 "alternatives": []

}

Note: Although there is an alternatives property in the speaker change element it is always empty, and can be

ignored. The start_time and end_time properties are always identical, and provide the time when the change

was detected.

A speaker change indicates where we think a different person has started talking. For example, if one person says

"Hello James" and the other responds with "Hi", there should be a speaker_change element between "James"

and "Hi", for example:

{

 "format": "2.7",

 "job": {

....

 "results": [

 {

 "start_time": 0.1,

 "end_time": 0.22,

 "type": "word",

 "alternatives": [

 {

 "confidence": 0.71,

 "content": "Hello",

 "language": "en",

 "speaker": "UU"

 }

]

 },

 {

 "start_time": 0.22,

 "end_time": 0.55,

 "type": "word",

 "alternatives": [

 {

 "confidence": 0.71,

 "content": "James",

 "language": "en",

 "speaker": "UU"

 }

]

 },

 {

 "start_time": 0.55,

 "end_time": 0.55,

 "type": "speaker_change",

28

 "alternatives": []

 },

 {

 "start_time": 0.56,

 "end_time": 0.61,

 "type": "word",

 "alternatives": [

 {

 "confidence": 0.71,

 "content": "Hi",

 "language": "en",

 "speaker": "UU"

 }

]

 }

]

}

Note: You can only choose speaker_change as an alternative to speaker or channel diarization.

Speaker Change Detection With Channel Diarization

Speaker change can be combined with channel diarization. It will transcribe each channel separately and indicate

in the output each channel (with labels if set) and the speaker changes on each of the channels. For example, if a

two-channel audio contains three people greeting each other (with a single speaker on channel 1 and two

speakers on channel 2), the config submitted with the audio to request the speaker change detection is:

{

 "type": "transcription",

 "transcription_config": {

 "diarization": "channel_and_speaker_change",

 "speaker_change_sensitivity": 0.8

 }

}

The output will have special elements in the results array between two words where a different person starts

talking on the same channel.

{

 "format": "2.7",

 "job": {

....

 },

 "metadata": {

....

 },

 "results": [

 {

 "channel": "channel_2",

 "start_time": 0.1,

 "end_time": 0.22,

 "type": "word",

 "alternatives": [

 {

 "confidence": 0.71,

 "content": "Hello",

29

 "language": "en",

 "speaker": "UU"

 }

]

 },

 {

 "channel": "channel_2",

 "start_time": 0.22,

 "end_time": 0.55,

 "type": "word",

 "alternatives": [

 {

 "confidence": 0.71,

 "content": "James",

 "language": "en",

 "speaker": "UU"

 }

]

 },

 {

 "channel": "channel_1",

 "start_time": 0.55,

 "end_time": 0.55,

 "type": "speaker_change",

 "alternatives": []

 },

 {

 "channel": "channel_2",

 "start_time": 0.56,

 "end_time": 0.61,

 "type": "word",

 "alternatives": [

 {

 "confidence": 0.71,

 "content": "Hi",

 "language": "en",

 "speaker": "UU"

 }

]

 },

 {

 "channel": "channel_1",

 "start_time": 0.56,

 "end_time": 0.61,

 "type": "word",

 "alternatives": [

 {

 "confidence": 0.71,

 "content": "Hi",

 "language": "en",

 "speaker": "UU"

 }

]

 }

30

]

}

Note: Do not try to request speaker_change and channel diarization as multiple options: only

channel_and_speaker_change is an accepted parameter for this configuration.

Custom dictionary

The Custom Dictionary feature allows a list of custom words to be added for each transcription job. This helps

when a specific word is not recognised during transcription. It could be that it's not in the vocabulary for that

language, for example a company or person's name. Adding custom words can improve the likelihood they will be

output.

The sounds_like feature is an extension to this to allow alternative pronunciations to be specified to aid

recognition when the pronunciation is not obvious.

The Custom Dictionary feature can be accessed through the additional_vocab property.

Prior to using this feature, consider the following:

sounds_like is an optional setting recommended when the pronunciation is not obvious for the word or

it can be pronounced in multiple ways; it is valid just to provide the content value

sounds_like only works with the main script for that language

Japanese (ja) sounds_like only supports full width Hiragana or Katakana

You can specify up to 1000 words or phrases (per job) in your custom dictionary

"transcription_config": {

 "language": "en",

 "additional_vocab": [

 {

 "content": "gnocchi",

 "sounds_like": [

 "nyohki",

 "nokey",

 "nochi"

]

 },

 {

 "content": "CEO",

 "sounds_like": [

 "C.E.O."

]

 },

 {

 "content": "financial crisis"

 }

]

}

In the above example, the words gnocchi and CEO have pronunciations applied to them; the phrase financial crisis

does not require a pronunciation. The content property represents how you want the word to be output in the

transcript.

Using the Shared Custom Dictionary Cache

31

Processing a large custom dictionary repeatedly can be CPU consuming and inefficient. The Speechmatics Batch

Container includes a cache mechanism for custom dictionaries to limit excessive resource use. By using this cache

mechanism, the container can reduce the overall time needed for speech transcription when repeatedly using the

same custom dictionaries. You will see performance benefits on re-using the same custom dictionary from the

second time onwards.

It is not a requirement to use the shared cache to use the Custom Dictionary.

The cache volume is safe to use from multiple containers concurrently if the operating system and its filesystem

support file locking operations. The cache can store multiple custom dictionaries in any language used for batch

transcription. It can support multiple custom dictionaries in the same language.

If a custom dictionary is small enough to be stored within the cache volume, this will take place automatically if the

shared cache is specified.

For more information about how the shared cache storage management works, please see Maintaining the

Shared Cache.

We highly recommend you ensure any location you use for the shared cache has enough space for the number of

custom dictionaries you plan to allocate there. How to allocate custom dictionaries to the shared cache is

documented below.

How to set up the Shared Cache

The shared cache is enabled by setting the following value when running transcription:

Cache Location: You must volume map the directory location you plan to use as the shared cache to

/cache when submitting a job

SM_CUSTOM_DICTIONARY_CACHE_TYPE : (mandatory if using the shared cache) This environment variable

must be set to shared

SM_CUSTOM_DICTIONARY_CACHE_ENTRY_MAX_SIZE : (optional if using the shared cache). This determines

the maximum size of any single custom dictionary that can be stored within the shared cache in bytes

E.G. a SM_CUSTOM_DICTIONARY_CACHE_ENTRY_MAX_SIZE with a value of 10000000 would set a

total storage size of 10MB

For reference a custom dictionary wordlist with 1000 words produces a cache entry of size

around 200 kB, or 200000 bytes

A value of -1 will allow every custom dictionary to be stored within the shared cache. This is the

default assumed value

A custom dictionary cache entry larger than the

SM_CUSTOM_DICTIONARY_CACHE_ENTRY_MAX_SIZE will still be used in transcription, but will not

be cached

Maintaining the Shared Cache

If you specify the shared cache to be used and your custom dictionary is within the permitted size, Speechmatics

Batch Container will always try to cache the custom dictionary. If a custom dictionary cannot occupy the shared

cache due to other cached custom dictionaries within the allocated cache, then older custom dictionaries will be

removed from the cache to free up as much space as necessary for the new custom dictionary. This is carried out

in order of the least recent custom dictionary to be used.

Therefore, you must ensure your cache allocation large enough to handle the number of custom dictionaries you

plan to store. We recommend a relatively large cache to avoid this situation if you are processing multiple custom

dictionaries using the batch container (e.g 50 MB). If you don't allocate sufficient storage this could mean one or

multiple custom dictionaries are deleted when you are trying to store a new custom dictionary.

It is recommended to use a docker volume with a dedicated filesystem with a limited size. If a user decides to use

a volume that shares filesystem with the host, it is the user's responsibility to purge the cache if necessary.

32

Creating the Shared Cache

In the example below, transcription is run where an example local docker volume is created for the shared cache. It

will allow a custom dictionary of up to 5MB to be cached.

docker volume create speechmatics-cache

docker run -i -v /home/user/sm_audio.wav:/input.audio \

 -v /home/user/config.json:/config.json:ro \

 -e SM_CUSTOM_DICTIONARY_CACHE_TYPE=shared \

 -e SM_CUSTOM_DICTIONARY_CACHE_ENTRY_MAX_SIZE=5000000 \

 -v speechmatics-cache:/cache \

 -e LICENSE_TOKEN=f787b0051e2768bcee3231f619d75faab97f23ee9b7931890c05f97e9f550702 \

 batch-asr-transcriber-en:9.1.0

Viewing the Shared Cache

If all set correctly and the cache was used for the first time, a single entry in the cache should be present.

The following example shows how to check what Custom Dictionaries are stored within the cache. This will show

the language, the sampling rate, and the checksum value of the cached dictionary entries.

ls $(docker inspect -f "{{.Mountpoint}}" speechmatics-cache)/custom_dictionary

en,16kHz,db2dd9c0d10faa8006d8a3fabc86aef6b6e27b3ccbd2a945d3aae791c627f0c5

Reducing the Shared Cache Size

Cache size can be reduced by removing some or all cache entries.

rm -rf $(docker inspect -f "{{.Mountpoint}}" speechmatics-cache)/custom_dictionary/*

:::note Manually purging the cache Before manually purging the cache, ensure that no containers have the volume

mounted, otherwise an error during transcription might occur. Consider creating a new docker volume as a

temporary cache while performing purging maintenance on the cache. :::

Output Locale

It is possible to optionally specify the language locale to be used when generating the transcription output, so that

words are spelled correctly, for cases where the model language is generic and doesn't already imply the locale.

The following locales are supported in the Global English language pack:

en-AU: supports Australian English

en-GB: supports British English

en-US: supports American English

The output_locale configuration setting is used for this. As an example, the following configuration uses the

Global English (en) language pack with an output locale of British English (en-GB):

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "output_locale": "en-GB"

 }

}

The following locales are supported for Chinese Mandarin. The default is simplified Mandarin.

33

Simplified Mandarin (cmn-Hans)

Traditional Mandarin (cmn-Hant)

Advanced punctuation

All Speechmatics language packs support Advanced Punctuation. This uses machine learning techniques to add in

more naturalistic punctuation, improving the readability of your transcripts.

The following punctuation marks are supported for each language:

Language(s) Supported Punctuation Comment

Cantonese, Mandarin ， 。 ？ ！ 、 Full-width punctuation supported

Japanese 。 、 Full-width punctuation supported

Hindi । ? , !

All other languages . , ! ?

If you do not want to see any of the supported punctuation marks in the output, then you can explicitly control this

through the punctuation_overrides settings, for example:

"transcription_config": {

 "language": "en",

 "punctuation_overrides": {

 "permitted_marks":[".", ","]

 }

}

This will exclude exclamation and question marks from the returned transcript.

All Speechmatics output formats support Advanced Punctuation. JSON output places punctuation marks in the

results list marked with a type of "punctuation" .

Note: Disabling punctuation may slightly harm the accuracy of speaker diarization. Please see the "Speaker

diarization post-processing" section in these docs for more information.

Notifications

Speechmatics allows customers to receive callbacks to a web service they control. Speechmatics will then make a

HTTP POST request once the transcription is available. If you wish to enable notifications, you must add the

notification_config only as part of the config.json object. This is separate to the transcription_config.

The following parameters are available:

url : (mandatory) The URL to which a notification message will be sent upon completion of the job.

contents : (optional) Specifies a list of item(s) to be attached to the notification message. If you only

want to receive a simple notification with no transcript or other data attached **ensure that the value here

is [] rather than empty. An example is provided in our Technical Migration Guide If only one item is

listed, it will be sent as the body of the request with Content-Type set to an appropriate value such as

application/octet-stream or application/json. If multiple items are listed they will be sent as

named file attachments using the multipart content type. Examples of what can be sent include the

following:

jobinfo : A summary of the job. This will only be provided if you provide a jobinfo.json file when

submitting a file for transcription. Please see the relevant section for information

transcript : The transcript in json-v2 format

transcript.json-v2 : The transcript in json-v2 format.

http://localhost:61825/ConfiguringtheJobRequest.md#Speaker-diarization-post-processing

34

transcript.txt : The transcript in txt format.

transcript.srt : The transcript in srt format.

method : (optional) the method to be used with HTTP and HTTPS URLs. If no option is chosen, the

default is POST, but PUT is also supported.

auth_headers : (optional) A list of additional headers to be added to the notification request when

using http or https. This is intended to support authentication or authorization, for example by supplying

an OAuth2 bearer token.

If you want to upload content directly to an object store, for example Amazon S3, you must ensure that the URL

grants the Speechmatics container appropriate permissions when carrying out notifications. Pre-authenticated

URLs, generated by an authorsed user, allow non-trusted devices access to upload to access stores. AWS carries

this out via generating pre-signed URLs. Microsoft Azure allows similar acess via Shared Access Signatures.

Please see the section [How to transcribe files stored online](### How to transcribe files stored online) for details

of how to pull files from online storage locations for transcription, and more information on pre-authenticated

URLs

An example request for transcription in English with notification_config is shown below:

{

 "type": "transcription",

 "transcription_config": { "language": "en" },

 "notification_config": [

 {

 "url": "https://collector.example.org/callback",

 "contents": ["transcript", "data"],

 "auth_headers": ["Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhb"]

 }

]

 }

If the callback is unsuccessful, it will repeat up to three times in total. If, after three times, it is still unsuccessful, it

will process only the transcript via STDOUT.

How to generate multiple transcript formats

In addition to our primary JSON format, the Speechmatics container can output transcripts in the plain text (TXT)

and SubRip (SRT) subtitle format. This can be done by using --all-formats command and then specifying

<$EXAMPLE_DIRECTORY> parameter within the transcription request. The <$EXAMPLE_DIRECTORY> is where all

supported transcript formats will be saved. Users can also use --allformats to generate the same response.

This directory must be mounted into the container so the transcripts can be retrieved after container finishes. You

will receive a transcript in all currently supported formats: JSON, TXT, and SRT.

The following example shows how to use --all-formats parameter. In this scenario, after processing the file,

three separate transcripts would be found in the ~/tmp/output directory. These transcripts would be in JSON,

TXT, and SRT format.

docker run \

 -v ~/Projects/ba-test/data/shipping-forecast.wav:/input.audio \

 -v ~/tmp/config.json:/config.json \

 -v ~/tmp/output:/example_output_dir_name \

 batch-asr-transcriber-en:9.1.0 \

 --all-formats /example_output_dir_name

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-presigned-urls.html
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview

35

SubRip Subtitles

SubRip (SRT) is a subtitling format that can be used in to generate subtitles for video content or other workflows.

Our SRT output will generate a transcript together with corresponding alignment timestamps. We follow best

practice as recommended by major broadcasters in our default line length and number of lines output.

You can change the maximum number of lines supported, and the maximum character space within a line, by using

configuration options as part of the output_config, which is part of the overall config.json object described

below:

{

 "type": "transcription",

 "transcription_config": {

 ...

 },

 "output_config": {

 "srt_overrides": {

 "max_line_length": 37,

 "max_lines": 2

 }

 }

}

max_line_length : sets maximum count of characters per subtitle line including white space (default:

37).

max_lines : sets maximum count of lines in a subtitle section (default: 2).

URL Fetching

 If you want to access a file stored in cloud storage, for example AWS S3 or Azure Blob Storage, you can use the

fetch_data parameter within the config.json object. The fetch_data parameter specifies a cloud storage

location.

You must ensure the URL you provide grants Speechmatics appropriate privileges to access the necessary

files, otherwise this will result in a transcription error. Cloud providers like AWS and Azure allow temporary access

to non-privileged parties to access and upload objects to cloud storage via generation of authenticated URLs by

an authorised user. AWS recommends using pre-signed URLs to grant access when accessing objects from and

uploading to S3. Azure recommends use of shared access signatures when accessing from and uploading to Azure

Storage. Speechmatics supports both of these options

A pre-generated URL will contain authorization parameters within the URL. These can include information about

how long the URL is valid for and what permissions access to the URL enables. More information is present on the

page of each cloud provider

To successfully call data objects stored online using the Speechmatics container you must use the following

parameters:

url : (mandatory if you want to access an online file) the location of the file

auth_headers : (optional) If your cloud storage solution requires authentication. The auth_headers

parameter provides the headers necessary to access the resource. This is intended to support

authentication or authorization when using http or https, for example by supplying an OAuth2 bearer

token

 An example is below:

{

 "type": "transcription",

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-presigned-urls.html
https://docs.microsoft.com/en-gb/azure/storage/common/storage-sas-overview

36

 "transcription_config": {

 "language": "en"

 },

 "fetch_data": {

 "url": "https://example.s3.amazonaws.com/folder/file.mp3?

&AWSAccessKeyId=...&Expires=...&Signature=...",

 "auth_headers": ["Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhb"]

 }

}

How to track a file

The jobInfo file

You can optionally submit additional information to the batch container that can then be used as further or

tracking metadata. To do so you must submit a jobInfo file as a sepatate json object. This file is separate to the

config.json object when submitting a request. The jobInfo file must include a unique id, the name and

duration of the data file, and the UTC date the job was created. This information is then available in job results and

in callbacks.

When using a jobInfo file you must submit the following mandatory properties:

created_at - The UTC time the job was created at. An example is "2019-01-17T17:50:54.113Z"

data_name - The name of the file submitted as part of the job. An example is example.wav . This does

not need to match the actual file name

duration - The length of the audio file. This must be an integer value in seconds and must be at least 0

id - A customer-unique ID that is assigned to a job. This is not a value provided by Speechmatics

Optional Metadata

You may also submit the following optional properties as part of metadata tracking. These are properties that are

unique to your organisation that you may wish to or are required to track through a company workflow or where

you are processing large amounts of files. This information will then be available in the jobInfo output and in

notification callbacks:

tracking - Parent of the following child properties. If you are submitting metadata for tracking this

must be included

title - The title of the job

reference - External system reference

tag - Any tags by which you associate files or data

details - Customer-defined JSON structure. These can include information valuable to you

about the job

An example jobInfo.json file is below, with optional metadata inserted

{

 "created_at": "2020-06-26T12:12:24.625Z",

 "data_name": "example_file",

 "duration": 5,

 "id": "1",

 "tracking": {

 "title": "ACME Q12018 Statement",

 "reference": "/data/clients/ACME/statements/segs/2018Q1-seg8",

 "tags": [

 "quick-review",

37

 "segment"

],

 "details": {

 "client": "ACME Corp",

 "segment": 8,

 "seg_start": 963.201,

 "seg_end": 1091.481

 }

 }

}

Running the JobInfo file

Here is an example of processing a file on the batch container with an example jobInfo file:

docker run -v /PATH/TO/FILE/jobInfo.json:/jobInfo.json \

 -v /PATH/TO/FILE/config.json:/config.json \

 -v /PATH/TO/FILE/audio.wav:/input.audio \

 -e LICENSE_KEY=$license batch-asr-transcriber-en:9.1.0

jobInfo Output Example

Here is an example of the json output when using a jobInfo file, with the first word of the transcript. You can see

the output is divided into several sections:

The license information, including the time of build and number of days remaining

The information present in the jobInfo file, including any metadata or tracking information

The configuration information presented in the config.json file

The results of the transcript, including the word, confidence score, diarization information etc.

{

 "format": "2.7",

 "job": {

 "created_at": "2020-07-01T12:46:34.393Z",

 "data_name": "example.wav",

 "duration": 128,

 "id": "1",

 "tracking": {

 "details": {

 "client": "ACME Corp",

 "segment": 8,

 "seg_start": 963.201,

 "seg_end": 1091.481

 },

 "reference": "/data/clients/ACME/statements/segs/2018Q1-seg8",

 "tags": [

 "quick-review",

 "segment"

],

 "title": "ACME Q12018 Statement"

 }

 },

 "metadata": {

 "created_at": "2020-07-01T12:47:28.470Z",

 "type": "transcription",

 "transcription_config": {

38

 "language": "en",

 "diarization": "speaker"

 }

 },

 "results": [

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "This",

 "language": "en",

 "speaker": "S1"

 }

],

 "end_time": 1.98,

 "start_time": 1.86,

 "type": "word"

 }

]

}

NB When using the jobInfo file the format output will show 2 created_at parameters. The created_at under

job is when the file was submitted for transcription The createdDate under metadata is when the output

was produced. The time difference between the two provides the total transcription time, including any system

delays as well as the actual time taken to process the job.

Word Tagging

Profanity Tagging

Speechmatics now outputs in JSON transcript only a metadata tag to indicate whether a word is a profanity or not.

This is for the following languages:

English (EN)

Italian (IT)

Spanish (ES)

The list of profanities is not alterable. Users do not have to take any action to access this - it is provided in our

JSON output as standard Customers can use this tag for their own post-processing in order to identify, redact, or

obfuscate profanities and integrate this data into their own workflows. An example of how this looks is below.

"results": [

{

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "$PROFANITY",

 "language": "en",

 "speaker": "UU",

 "tags": [

 "profanity"

]

 }

],

 "end_time": 18.03,

39

 "start_time": 17.61,

 "type": "word"

 }

]

Disfluency Tagging

Speechmatics now outputs in JSON transcript only a metadata tag to indicate whether a word is a disfluency or

not in the English language only. A disfluency here refers to a set list of words in English that imply hesitation or

indecision. Please note while disfluency can cover a range of items like stuttering and interjections, here it is only

used to tag words such as 'hmm' or 'umm'. Users do not have to take any action to access this - it is provided in

our JSON output as standard Customers can use this tag for their own post-processing workflows. An example of

how this looks is below:

"results": [

{

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "hmm",

 "language": "en",

 "speaker": "UU",

 "tags": [

 "disfluency"

]

 }

],

 "end_time": 18.03,

 "start_time": 17.61,

 "type": "word"

 }

]

Domain Language Packs

Some Speechmatics language packs are optimized for specific domains where high accuracy for specific

vocabulary and terminology is required. Using the domain parameter provides additional transcription accuracy,

and must be used in conjunction with a standard language pack (this is currently limited to the "finance" domain

and supports the "en" language pack). An example of how this looks is below:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

 "domain": "finance"

 }

}

These domain language packs are built on top of our global language packs so give the highest accuracy in

different acoustic environments that our customers have come to expect.

Please note that if you are using the "Finance" domain language pack you will need to use the "en-finance"

container image, located at speechmatics-docker-public.jfrog.io/batch-asr-transcriber-en-finance .

More details about how to pull container images can be found here

https://docs.speechmatics.com/en/batch-container/quick-start/#pulling-the-image

40

It is expected that whilst there will be improvements for the specific domain there can be degradation in accuracy

for other outside domains.

Full API Reference

Below are the full API references for the config.json and the jobInfo.json files.

config.json API Reference

The config.json is constructed of multiple configuration settings, each of which is responsible for a separate

section of transcription output. All configuration settings are passed within the type object Only

transcription_config is mandatory.

type (Mandatory): Within type you must pass all other config information

transcription_config: (Mandatory) Information about what language and features you want to use in the

batch container

fetch_data: (Optional) If you wish to transcribe a file stored online, you may pass this within the

config.json file

notification_config: (Optional) If you want to use callbacks, this documents where and how they are sent

output_config: (Optional) If you want to retrieve files in SRT format, and you want to alter the default

settings in how SRT appears only.

transcription_config

Name Type Description Required

language string

Language model to process the

audio input, normally specified as

an ISO language code

Yes

domain string

Request a specialized language

pack optimized for a particular

domain, e.g. "finance". Domain is

only supported for selected

languages.

No

additional_vocab [object]

List of custom words or phrases

that should be recognized.

Alternative pronunciations can be

specified to aid recognition.

No

punctuation_overrides [object]

Control punctuation settings.

Only valid with languages that

support advanced punctuation.

These are Arabic, Danish, Dutch,

English, French, German, Malay,

Spanish, Swedish and Turkish.

No

diarization string

The default is none. You may

specify options of speaker,

channel,speaker_change,

channel_and_speaker_change, or

none

No

speaker_diarization_config SpeakerDiarizationConfig Configuration for speaker

diarization. Includes

speaker_sensitivity: Range

No

41

between 0 and 1. A higher

sensitivity will increase the

likelihood of more unique

speakers returning. For example,

if you see fewer speakers

returned than expected, you can

try increasing the sensitivity value

or if too many speakers are

returned try reducing this value.

The default is 0.5.

speaker_change_sensitivity float

Used for the speaker change

feature. Range between 0 and 1.

Controls how responsive the

system is for potential speaker

changes. High value indicates

high sensitivity. Defaults to 0.4.

No

channel_diarization_labels [string]

Transcript labels to use when

using collating separate input

channels. Only applicable when

you have selected channel as a

diarization option

No

output_locale string

Only applicable with global

English. Correct maps words to

local spellings. Options are, en-AU,

en-GB, or en-US

No

operating_point string

Specify whether to use a standard

or enhanced model for transription.

By default the model used is

standard

No

enable_entities Boolean

Specify whether to enable entity

types within JSON output, as well

as additional spoken_form and

written_form metadata. By default

false

No

fetch_data

Name Type Description Required

url string The online location of the file. Yes

auth_headers [string]

A list of additional headers to be added to the input fetch request

when using http or https. This is intended to support

authentication or authorization, for example by supplying an

OAuth2 bearer token.

No

speaker_diarization_config

Additional configuration for the Speaker Diarization feature.

Name Type Description Required

42

speaker_sensitivity float Used for speaker diarization feature. Range between 0 and 1.

A higher sensitivity will increase the likelihood of more unique

speakers returning. For example, if you see fewer speakers

returned than expected, you can try increasing the sensitivity

value, or if too many speakers are returned try reducing this

value. The default is 0.5.

No

notification_config

Name Type Description Required

url string

The url to which a notification message will be sent upon

completion of the job. If only one item is listed, it will be sent as

the body of the request with Content-Type set to an appropriate

value such as application/octet-stream or application/json. If

multiple items are listed they will be sent as named file

attachments using the multipart content type. If contents is not

specified, the transcript item will be sent as a file attachment

named data_file, for backwards compatibility. If the job was

rejected or failed during processing, that will be indicated by the

status, and any output items that are not available as a result will

be omitted. The body formatting rules will still be followed as if all

items were available. The user-agent header is set to Speechmatics

API V2 in all cases.

Yes

content
[string

]

Specifies a list of items to be attached to the notification

message. When multiple items are requested, they are included as

named file attachments.

No

method string
The method to be used with http and https urls. The default is

POST.
No

auth_headers [string]

A list of additional headers to be added to the input fetch request

when using http or https. This is intended to support

authentication or authorization, for example by supplying an

OAuth2 bearer token.

No

output_config

Name Type Description Required

srt_overrides object

Parameters to override the defaults for SubRip (srt) subtitle format.

- max_line_length: sets maximum count of characters per subtitle

line including white space (default: 37). -max_lines: sets maximum

number of lines per subtitle segment (default: 2).

No

jobInfo reference

Name Type Description Required

createdAt dateTime The UTC date time the job was created. Yes

data_name string Name of the data file submitted for job. No

duration integer The file duration (in seconds). No

tracking object Additional tracking information No

43

tracking metadata within the jobInfo file

The following information can be passed within the tracking object as part of the jobInfo file

Name Type Description Required

title string The title of the job. No

reference string External system reference. No

tags [string] A set of keywords No

details object Customer-defined JSON structure. No

Ability to run a container with multiple cores

For customers who are looking to improve job turnaround time and who are able to assign sufficient resources, it

is possible to pass a parallel transcription parameter to the container to take advantage of multiple CPUs. The

parameter is called parallel and the following example shows how it can be used. In this case to use 4 cores to

process the audio you would run the container like this:

docker run -i -rm -v ~/tmp/shipping-forecast.wav:/input.audio \

 -v ~/tmp/config.json:/config.json \

 batch-asr-transcriber-en:9.0.1 \

 --parallel=4

Depending on your hardware, you may need to experiment to find the optimum performance. We've noticed

significant improvement in turnaround time for jobs by using this approach.

If you limit or are limited on the number of CPUs you can use (for example your platform places restrictions on the

number of cores you can use, or you use the --cpu flag in your docker run command), then you should

ensure that you do not set the parallel value to be more than the number of available cores. If you attempt to

use a setting in excess of your free resources, then the container will only use the available cores.

If you simply increase the parallel setting to a large number you will see diminishing returns. Moreover, because

files are split into 5 minute chunks for parallel processing, if your files are shorter than 5 minutes then you will see

no parallelization (in general the longer your audio files the more speedup you will see by using parallel

processing).

If you are running the container on a shared resource you may experience different results depending on what

other processes are running at the same time.

The optimum number of cores is N/5, where N is the length of the audio in minutes. Values higher than this will

deliver little to no value, as there will be more cores than chunks of work. A typical approach will be to increment

the parallel setting to a point where performance plateaus, and leave it at that (all else being equal).

For large files and large numbers of cores, the time taken by the first and last stages of processing (which cannot

be parallelized) will start to dominate, with diminishing returns.

Formatting Common Entities

Overview

Entities are commonly recognisable classes of information that appear in languages, for example numbers and

dates. Formatting these entities is commonly referred to as Inverse Text Normalisation (ITN). Speechmatics will

44

output entities in a predictable, consistent written form, reducing post-processing work required aiming to make

the transcript more readable.

The language pack will use these formatted entities by default in the transcription for all outputs (JSON, text and

srt). Additional metadata about these entities can be requested via the API including the spoken words without

formatting and the entity class that was used to format it.

Supported Languages

Entities are supported in the following languages:

Cantonese

Chinese Mandarin (Simplified and Traditional)

English

French

German

Hindi

Italian

Japanese

Portuguese

Russian

Spanish

Using the enable_entities parameter

Speechmatics now includes an enable_entities parameter. This can be requested via the API. By default this is

false .

Changing enable_entities to true will enable a richer set of metadata in the JSON output only. Customers

can choose between the default written form, spoken form, or a mixture, for their own workflows.

The changes are as following:

A new type - entity in the JSON output in addition to word and punctuation . For example: "1.99"

would have a type of entity and a corresponding entity_class of decimal

The entity will contain the formatted text in the content section, like other words and punctuation

The content can include spaces, non-breaking spaces, and symbols (e.g. $/£/%)

A new output element, entity_class has been introduced. This provides more detail about how the

entity has been formatted. A full list of entity classes is provided below.

The start and end time of the entity will span all the words that make up that entity

The entity also contains two ways that the content will be output:

spoken_form - Each individual word within the entity, written out in words as it was spoken.

Each individual word has its own start time, end time, and confidence score. For example: "one",

"million", "dollars"

written_form - The same output as within entity content, with a type of word instead. If

there are spaces in the content it will be split into individual words. For example: "$1", "million"

Configuration example

Please see an example configuration file that would request entities:

{

 "type": "transcription",

 "transcription_config": {

 "language": "en",

45

 "enable_entities": true

 }

}

Different entity classes

The following entity_classes can be returned. Entity classes indicate how the numerals are formatted. In some

cases, the choice of class can be contextual and the class may not be what was expected (for example "2001"

may be a "cardinal" instead of "date"). The number of entity_classes may grow or shrink in the future.

N.B. Please note existing behaviour for English where numbers from zero to 10 (excluding where they are output

as a decimal/money/percentage) are output as words is unchanged.

Entity

Class
Formatting Behaviour

Spoken Word Form

Example

Written Form

Example

alphanum

A series of three or more

alphanumerics, where an alphanumeric

is a digit less than 10, a character or

symbol

triple seven five four 77754

cardinal

Any number greater than ten is

converted to numbers. Numbers ten or

below remain as words. Includes

negative numbers

nineteen 19

credit card

A long series of spoken digits less than

10 are converted to numbers. Support

for common credit cards

one one one one two

two two two three three

three three four four four

four

1111222233334444

date

Day, month and year, or a year on its

own. Any words spoken in the date are

maintained (including "the" and "of")

fifteenth of January

twenty twenty two

15th of January

2022

decimal
A series of numbers divided by a

separator
eighteen point one two 18.12

fraction

Small fractions are kept as words

("half"), complex fractions are

converted to numbers separated by "/"

three sixteenths 3/16

money

Currency words are converted to

symbols before or after the number

(depending on the language)

twenty dollars $20

ordinal
Ordinals greater than 10 are output as

numbers
forty second 42nd

percentage
Numbers with a per cent have the per

cent converted to a % symbol
duecento percento 200%

span
A range expressed as "x to y" where x

and y correspond to another entity class

one hundred to two

hundred million pounds
100 to £200 million

time Times are converted to numbers eleven forty a m 11�40 a.m.

word Entities that do not match a specific hundreds hundreds

46

class

Output locale styling

Each language has a specific style applied to it for thousands, decimals and where the symbol is positioned for

money or percentages.

For example

English contains commas as separators for numbers above 9999 (example: "20,000"), the money symbol

at the start (example: "$10") and full stops for decimals (example: "10.5")

German contains full stops as separators for numbers above 9999 (example: "20.000"), the money

symbol comes after with a non-breaking space (example: "10 $") and commas for decimals (example:

"10,5")

French contains non-breaking spaces as separators for numbers above 9999 (example: "20 000"), the

money symbol comes after with a non-breaking space (example: "10 $") and commas for decimals

(example: "10,5")

Example output

Here is an example of a transcript requested with enable_entities set to true:

An entity that is "17th of January 2022", including spaces

The start and end times span the entire entity

An entity_class of date

The spoken_form is split into the following individual words: "seventeenth", "of", "January",

"twenty", "twenty", "two". Each word has its own start and end time

the written_form split into the following individual words: "17th", "of", "January", "2022". Each

word has its own start and end time

Note:

By default and when speaker diarization is enabled, speaker parameter is added per word within the

entity, spoken and written form

When channel diarization is enabled, channel parameter is only added on the results parent within

the entity and not included in spoken and written form

 "results": [

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "17th of January 2022",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 3.14,

 "entity_class": "date",

 "spoken_form": [

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "seventeenth",

47

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 1.41,

 "start_time": 0.72,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "of",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 1.53,

 "start_time": 1.41,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "January",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 2.04,

 "start_time": 1.53,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "twenty",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 2.46,

 "start_time": 2.04,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 1.0,

 "content": "twenty",

 "language": "en",

 "speaker": "UU"

48

 }

],

 "end_time": 2.79,

 "start_time": 2.46,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.97,

 "content": "two",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 3.14,

 "start_time": 2.79,

 "type": "word"

 }

],

 "start_time": 0.72,

 "type": "entity",

 "written_form": [

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "17th",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 1.33,

 "start_time": 0.72,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "of",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 1.93,

 "start_time": 1.33,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "January",

49

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 2.54,

 "start_time": 1.93,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "2022",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 3.14,

 "start_time": 2.54,

 "type": "word"

 }

]

 }

]

If enable_entities is set to false , the output is as below:

 "results": [

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "17th",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 1.33,

 "start_time": 0.72,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "of",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 1.93,

 "start_time": 1.33,

 "type": "word"

 },

50

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "January",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 2.54,

 "start_time": 1.93,

 "type": "word"

 },

 {

 "alternatives": [

 {

 "confidence": 0.99,

 "content": "2022",

 "language": "en",

 "speaker": "UU"

 }

],

 "end_time": 3.14,

 "start_time": 2.54,

 "type": "word"

 }

]

}

Batch Container Migration Guide

Overview

This is a guide for customers who are updating to V8.0.0 or later (October 2020). It documents changes in the

batch container, and how you, a customer, may need to reintegrate your batch container with any other systems. It

is provided in addition to our standard release notes and documentation pack.

As part of this upgrade, some V1 features that are no longer supported have been completely deprecated, and will

cease to work as announced in the v6.2.0 release.

In all cases, replacements are supported via our V2 input, and are documented in our Speech API Guide.

The changes below should show no loss of any feature or functionality as a result of the migration.

Scope

The scope of this document shows:

What changes you, the customer, must make to use the Speechmatics batch container v8.0.0 if you have

been using previous versions of the container

If you are still using deprecated V1 features, this document will show which ones are no longer supported,

and what you must use instead to ensure output

Examples of our V2 output, and how it differs from our V1 output

51

What changes have been made to licensing, and how you, the customer, must license a container prior to

using it

The scope of this document excludes

How to start the Batch Container - this is documented in our quick start guide

Our Speech API - this is documented in the Speech API guide

List of software packages used - this is covered in our release and attribution list

Recommendations for any custom workflows or integrations you have built

What has changed

License File

Previously Speechmatics built batch containers with their own license file integrated within the container for each

language required by a customer. For simplicity and replicability we have moved to a generic customer-agnostic

container for each language, with each customer now receiving a separate license file to use with the container(s)

they are licensed for.

Please note: The contents of the license file are confidential. They should be shared on the principles of least

privilege. Speechmatics is not responsible for how you handle, store, or share licensing information.

Speechmatics Support will provide you with a new license file. The license is a JSON file called license.json

and has the following JSON structure:

Item Description

Customer

name
This is your company's name

Id This is internal to Speechmatics

Is-Trial Whether the license is for a trial use of Speechmatics or not

Metadata

What Features a container is licensed to use. These can include:

Speaker Diarization

Channel Diarization

Speaker Change

Batch Container use

Real-time container use

Language: any supported language

Language: A supported individual language (e.g. English)

NotValidAfter
The date after which the license expires and can no longer be used to run the container.

The date is in ISO format

ValidFrom The date from which this license is valid.

Signed Claims

Token

A unique reference number used to validate the license file when running the container.

Generated by Speechmatics

The values in this license file will reflect each customer's individual contract arrangement with Speechmatics.

52

An example license file is below:

{

 "contractid": 1,

 "creationdate": "2020-03-24 17:43:35",

 "customer": "Speechmatics",

 "id": "c18a4eb990b143agadeb384cbj7b04c3",

 "is_trial": true,

 "metadata": {

 "key_pair_id": 1,

 "request": {

 "customer": "Speechmatics",

 "features": [

 "MAPBA",

 "LANY"

],

 "isTrial": true,

 "notValidAfter": "2021-01-01",

 "validFrom": "2020-01-01"

 }

 },

 "signedclaimstoken": "example",

}

How this affects you

Previously the batch container was licensed by use of the environment variable LICENSE_KEY . This is no longer a

valid variable and will not license the product. Instead you may either license the product via the two methods

described below:

Volume mapping the license file into the container. Volume map the location of the license file into the

container when running transcription jobs, like the Configuration Object. Please see below for an example:

docker run -i -v $AUDIO_FILE:/input.audio -v $CONFIG_JSON:/config.json -v

/my_license.json:/license.json batch-asr-transcriber-en:8.0.0

Use the value of the ‘signed claims tokenʼ from the license file and pass it as the value of the

LICENSE_TOKEN variable when running a transcription job. See an example of using LICENSE_TOKEN

below:

docker run -i -v $AUDIO_FILE:/input.audio -v $CONFIG_JSON:/config.json -e

LICENSE_TOKEN='example' batch-asr-transcriber-en:8.0.0

If you lose a license file or it is no longer secure, Speechmatics can generate a new one. Please contact

Speechmatics support if this is the case.

V1 Deprecation

In the Speechmatics container you can still process a media file for transcription without use of the V2

configuration object. This will generate our JSON v2 output without any alteration or changes to the text.

From the V8.0.0 release, the configuration file is now the only way by which you can modify the transcription

output in the Speechmatics container. If you want to use features such as diarization, punctuation overrides,

output locale etc. you must use the configuration object to request these features.

If you already do so, then you do not need to make any changes to how you use the container.

53

All JSON transcription output will now be in the V2.4 output.

As part of the v7.0.0 release support for V1 features was withdrawn. As part of this release all V1 features have

now since been removed. Where applicable, these have been replaced by options within the configuration object.

This includes the following:

V1 Item Type Replaced By

DIARIZE. Enables speaker diarization
environment

variable

Use the diarization:speaker parameter

within the configuration object

DIARISE. Enables speaker diarization
environment

variable

Use the diarization:speaker parameter

within the configuration object

CHANNEL_DIARISATION. enables channel

diarization on stereo files

environment

variable

Use the diarization:channel parameter

within the configuration object

CHANNEL_DIARISATION_LABELS. Provides

labels to different speakers when using

channel diarization

environemnt

variable

Replaced by the parameter

channel_diarization_labels in the

configuration object

LICENSE_KEY. used to license the batch

container

environment

variable
Replaced by LICENSE_TOKEN

/extra_words.txt. Used as a custom dictionary

to generate additional vocabulary objects
text file

Use the additional vocab parameter

within the configuration object to

generate a custom dictionary

/build_date. Documents the date the batch

container was built by
text file

Replaced by the new licensing file, and

no longer needed

/license_days. How many days the license has

to run
text file

Replaced by the new licensing file, and

no longer needed

Changes to Notifications

Notifications are still supported in the batch container as before. There are a few changes in how single and multi-

part notifications are generated and encoded, and this is noted below for integration purposes:

If you request transcript , this will now be output in the JSON-V2 format rather than the deprecated V1

JSON format

If you want to request an empty notification, you must specify contents to be blank by using [] . An

example is provided below

Notifications now have the charset=utf8 on all transcript types. Ensure that your workflow can support

this

For receiving notifications, Content-Type header's used to be set always to application/octet-

stream . This value now corresponds to actual content of the notification and is application/json in

case of JSON-v2 content, text/plain in case of an SRT contetn, and application/octet-stream

for TXT content

An example notification configuration that would generate a notification with no contents is shown below. This is a

change from the previous version of batch container.

{

 "notification_config": [{

 "url": "http://localhost:8080",

54

 "contents": []

 }]

}

