
1

Language Identification Container 1.0.0

2

Table of Contents
Language Identification Container

Versions

1.0.0

Language Identification Container Quick Start Guide

System Requirements

Prerequisites

Workflow

Supported Languages

Supported File Formats

Limitations

Accessing the Image

Software Repository Login

Pulling the Image

Licensing

Using the Container

API Reference

Identification Response

Identification Metadata

Identification Result

Identification Alternative

Ability to run a container with multiple cores

Determining success

Enable Logging

3

Language Identification Container

Versions

1.0.0

This is the first release of Speechmatics' Language Identification (ID) Container. Language ID currently identifies

the predominant language spoken in a media file and helps with automating the process of selecting which

language pack to use for transcription. 12 languages are supported.

Language Identification Container Quick Start Guide
This guide will walk you through the steps needed to deploy the Speechmatics Batch Language Identification

container.

This container will allow you to predict the predominant, most likely language spoken in a media file. You can use

the predicted language to select the correct transcriber when the language spoken in your file is unknown.

The following steps are required to use this in your environment:

Check system requirements

Pull the Docker Image into your local Docker Registry

Run the container

System Requirements

Speechmatics containerized deployments are built on the Docker platform. In order to operate the containers, the

following requirements will need to be met.

A single docker image can be used to create and run multiple containers concurrently, each running container will

require the following resources:

1 vCPU with AVX2 support

1 GB RAM

The raw image size of the Language Identification Container is around 800MB.

Prerequisites
Requires either a license file or license token before running the language identification

Access to our docker repository

Audio file (we recommend at least 60 seconds of speech in it for a high accuracy)

Note: If you do not have a license or access to the docker repository, please contact Speechmatics support

support@speechmatics.com.

Workflow
Run the Language ID docker container with an audio file

Receive the output JSON with the predicted language code

Use that language code to run transcription with any of the Speechmatics deployments

Supported Languages

The following languages are supported (language codes adhere the ISO-639 standard):

mailto:support@speechmatics.com

4

Language ISO Code

Chinese Mandarin cmn

German de

English en

Spanish es

French fr

Hindi hi

Italian it

Japanese ja

Korean ko

Dutch nl

Portuguese pt

Russian ru

Only these language codes can be predicted and match with the language codes used for transcription.

Supported File Formats

Only the following file formats are supported:

aac

amr

flac

m4a

mov

mp3

mp4

mpeg

ogg

wav

Limitations

This container only works in 'batch' mode - it receives a whole file, processes the file and then returns the

results, without any intermediate output

The observed accuracy increases with the amount of speech content inside the file. We see the best

accuracy when there are 60 seconds or more of speech

It's not possible to predict the language of each channel independently in a multi-channel media file; any

multi-channel files are converted to mono before identifying the language

Inverted multi-channel audio is not supported, this is where the second channel is the inverse of first

The container uses CPU and doesn't run on a GPU

Accessing the Image

Software Repository Login

The Language Identification container can be accessed from the Speechmatics Docker repository (jfrog.io). If you

do not have a Speechmatics software repository account or have lost your details, please contact Speechmatics

5

support support@speechmatics.com.

Log into the Speechmatics Docker repository to retrieve the container

docker login https://speechmatics-docker-public.jfrog.io

You will be prompted for a username and password. If successful, you will see the response:

Login Succeeded

If unsuccessful, please verify your credentials and URL. If problems persist, please contact Speechmatics support.

Pulling the Image

Please run the following Docker command to download the Language Identification container to your local

environment. For example to download version 1.0.0 of the container, you can use

docker pull speechmatics-docker-public.jfrog.io/langid:1.0.0

Note: Speechmatics require all customers to cache a copy of the Docker image(s) within their own environment.

Please do not pull directly from the Speechmatics software repository for each deployment.

The image will start to download. This could take a while depending on your connection speed.

Licensing

You should have received a confidential license file from Speechmatics containing a token to use to license your

container. The contents of the file received should look similar to this:

{

 "contractid": 1,

 "creationdate": "2022-06-01 09:04:11",

 "customer": "Speechmatics",

 "id": "c18a4eb990b143agadeb384cbj7b04c3",

 "metadata": {

 "key_pair_id": 1,

 "request": {

 "customer": "Speechmatics",

 "features": [

 "MAPBA",

 "ALID"

],

 "notValidAfter": "2023-01-01",

 "validFrom": "2022-01-01"

 }

 },

 "signedclaimstoken": "example"

}

There are two ways to apply the license to the container.

As a volume-mapped file

The license file should be mapped to the path /license.json within the container. For example:

docker run ... -v /my_license.json:/license.json:ro speechmatics-docker-

public.jfrog.io/langid:1.0.0

mailto:support@speechmatics.com

6

As an environment variable

Setting an environment variable named LICENSE_TOKEN is also a valid way to license the container. The

contents of this variable should be set to the value of the signedclaimstoken from within the license

file. For example, copy the signedclaimstoken from the license file (without the quotation marks) and

set the environment variable as below. The token example is not a full example:

docker run ... -e LICENSE_TOKEN=eyJhbGciOiJ... speechmatics-docker-

public.jfrog.io/langid:1.0.0

There should be no reason to do this, but if both a volume-mapped file and an environment variable are provided

simultaneously then the volume-mapped file will be ignored.

Using the Container

Once the Docker image has been pulled into a local environment, it can be started using the Docker run command.

More details about operating and managing the container are available in the Docker API documentation.

There are two different methods for passing a media file into a container:

STDIN: Streams media file into the container through the standard command line entry point

File Location: Pulls media file from a file location

Here are some examples below to demonstrate these modes of operating the container.

Example 1: passing a file using the cat command to the container

cat ~/$AUDIO_FILE | docker run -i -e LICENSE_TOKEN=eyJhbGciOiJ... speechmatics-docker-

public.jfrog.io/langid:1.0.0

Example 2: pulling a media file from a mapped directory into the container

docker run -v $AUDIO_FILE:/input.audio -e LICENSE_TOKEN=eyJhbGciOiJ... speechmatics-docker-

public.jfrog.io/langid:1.0.0

NOTE: the media file must be mapped into the container with :/input.audio

The Docker run options used are:

Name Description

--env, -e Set environment variables

--volume , -v Bind mount a volume

See Docker docs for a full list of the available options.

Both the methods will produce the same identification result. STDOUT is used to provide the result in JSON

format. Here's an example of the returned JSON:

{

 "format": "1.0",

 "metadata": {

 "created_at": "2022-06-13T11:27:19+0100",

 "duration": 300,

 "processed_duration": 247.1,

 "language_identification_config": {},

https://docs.docker.com/engine/api/latest
https://docs.docker.com/engine/reference/commandline/run/

7

 "type": "language_identification"

 },

 "results": [

 {

 "alternatives": [

 {

 "language": "en",

 "confidence": 0.97

 },

 {

 "language": "de",

 "confidence": 0.02

 },

 {

 "language": "es",

 "confidence": 0.01

 },

 {

 "language": "fr",

 "confidence": 0

 },

 {

 "language": "nl",

 "confidence": 0

 },

 {

 "language": "hi",

 "confidence": 0

 },

 {

 "language": "cmn",

 "confidence": 0

 },

 {

 "language": "pt",

 "confidence": 0

 },

 {

 "language": "it",

 "confidence": 0

 },

 {

 "language": "ko",

 "confidence": 0

 },

 {

 "language": "ru",

 "confidence": 0

 },

 {

 "language": "ja",

 "confidence": 0

 }

],

8

 "start_time": 0,

 "end_time": 300

 }

]

}

Note: If the results are returned empty and processed_duration is 0 then no speech was detected to

classify.

Note: Confidence scores are rounded to two decimal places. This means that they won't necessarily sum up to 1.

API Reference

Identification Response

Field Type Description Required

format string
Speechmatics identification JSON format version

number.
Yes

metadata
Identification

Metadata
Yes

results
[Identification Result

]
Yes

Identification Metadata

Field Type Description Required

created_at dateTime The UTC date time the job was created. Yes

duration float
The duration of the media file provided (in

seconds).
Yes

processed_duration float
The duration of detected speech in the media

file provided.
Yes

language_identification_config string
Any configuration requested when the job was

submitted.
Yes

type string
Job type. This is always

"language_identification".
Yes

Identification Result

Field Type Description Required

alternatives
[Identification Alternative

]

List of objects sorted with descending

confidence
No

start_time float The start of the file, marked in seconds Yes

end_time float The end of the file, marked in seconds Yes

Identification Alternative

Field Type Description Required

9

language string The language code. Yes

confidence float

The confidence of the prediction. This is a score between 0 and 1,

rounded to two decimal places. This means that they won't

necessarily sum up to 1.

Yes

Ability to run a container with multiple cores

For customers who are looking to improve job turnaround time and who are able to assign sufficient resources, it

is possible to pass a parallel parameter to the container to take advantage of multiple CPUs. The parameter is

called parallel and the following example shows how it can be used. In this case to use 2 cores to process the

audio you would run the container like this:

docker run ... speechmatics-docker-public.jfrog.io/langid:1.0.0 --parallel=2

Depending on your hardware, you may need to experiment to find the optimum performance. We've noticed an

improvement in turnaround time for jobs by using this approach.

If you limit or are limited on the number of CPUs you can use (for example your platform places restrictions on the

number of cores you can use, or you use the --cpu flag in your docker run command), then you should ensure that

you do not set the parallel value to be more than the number of available cores. If you attempt to use a setting in

excess of your free resources, then the container will only use the available cores.

If you are running the container on a shared resource, you may experience different results depending on what

other processes are running at the same time.

Determining success

The exit code of the container will determine if the identification was successful. There are two exit code

possibilities:

Exit Code == 0: The identification was a success; the output will contain a JSON output defining the

identification result

Exit Code != 0: the output will contain useful information why the job failed. This output should be used in

any communication with Speechmatics support to aid understanding and resolution of any problems that

may occur

Enable Logging

If you are seeing problems then we recommend that you open a ticket with Speechmatics support:

support@speechmatics.com. Please include the logging output from the container if you do open a ticket, and

ideally enable verbose logging.

Verbose logging is enabled by running the container with the environment variable DEBUG set to true. All logs are

written to STDERR.

docker run -e DEBUG=true ... speechmatics-docker-public.jfrog.io/langid:1.0.0

mailto:support@speechmatics.com

