
1

Real-time Container 1.0.0

2

Table of Contents
Real-time Container

Summary

What's New

Known Issues

Supported Platforms

Installation

Prerequisites

Real-time Container Quick Start Guide

System Requirements

Architecture

Accessing the Image

Getting the Image

Software Repository Login

Pulling the Image

Licensing

Using the Container

Input Modes

Output

Health service

Enabling the health service

Endpoints

/started

/live

/ready

Troubleshooting

Enabling Logging

Common Problems

Real-time Container API Guide

Client ↔ API endpoint

Messages

StartRecognition

Explaining Max Delay Mode

SetRecognitionConfig

AddAudio

AudioAdded

Implementation details

AddTranscript

AddPartialTranscript

EndOfStream

EndOfTranscript

Supported audio types

Transcription config

Requesting an enhanced model

Additional words

Output locale

Punctuation overrides

Error messages

Error types

3

Warning messages

Warning types

Info messages

Info message types

Example communication

Examples how to use the V2 API

WebSocket URI

Session Configuration

TranscriptionConfig

AddAudio

Final and Partial Transcripts

Requesting an enhanced model

Advanced Punctuation

Example Usage

JavaScript

Python

Standalone Real-Time Container Usage

Formatting Common Entities

Overview

Supported Languages

Using the enable_entities parameter

Configuration example

Different entity classes

Output locale styling

Example output

4

Real-time Container

Summary

These are the General Availability (GA) release notes for the Real-Time ASR container images. Following languages

are supported:

English (en)

German (de)

Spanish (es)

French (fr)

Portuguese (pt)

Japanese (ja)

Korean (ko)

Dutch (nl)

Italian (it)

Swedish (sv)

Danish (da)

Polish (pl)

Catalan (ca)

Hindi (hi)

Russian (ru)

Mandarin (cmn)

Norwegian (no)

Arabic (ar)

Bulgarian (bg)

Czech (cs)

Greek (el)

Finnish (fi)

Hungarian (hu)

Croatian (hr)

Lithuanian (lt)

Latvian (lv)

Romanian (ro)

Slovak (sk)

Slovenian (sl)

Turkish (tr)

Malay (ms)

Container images are labelled using the following scheme, where language codes adhere the ISO-639 standard:

rt-transcriber-<language>:<version>

For example,

rt-transcriber-en:1.1.0

Known Issues

The following are known issues in this release:

Reference Summary Workarounds

REQ- Chinese (cmn) container crashes occasionally Do not use whitespace characters in

5

13240 when using certain additional vocabulary additional vocabulary sounds_like

Supported Platforms

Docker 17.06.0+

Installation

Pull the container image from the Speechmatics Docker registry.

Prerequisites
Docker (17.06.0 or above).

Login credentials (URL, username and password) for the Speechmatics Docker registry.

Real-time Container Quick Start Guide
This guide will walk you through the steps needed to deploy the Speechmatics Real-time Container ready for

transcription.

Check system requirements

Pull the Docker Image

Run the Container

After these steps, the Docker Image can be used to create containers that will transcribe audio files. More

information about using the API for real-time transcription is detailed in the Speech API guide.

System Requirements

Speechmatics containerized deployments are built on the Docker platform. At present a separate Docker image is

required for each language to be transcribed. Each docker image takes about {{ book.requirements.image_size }}

of storage.

A single image can be used to create and run multiple containers concurrently, each running container will require

the following resources:

{{ book.requirements.cpus }}

{{ book.requirements.memory }} RAM

{{ book.requirements.storage }} hard disk space

The host machine requires a processor with following minimum specification: Intel® Xeon® CPU E5-2630 v4

(Sandy Bridge) 2.20GHz (or equivalent). This is important because these chipsets (and later ones) support

Advanced Vector Extensions (AVX). The machine learning algorithms used by Speechmatics ASR require the

performance optimizations that AVX provides. You should also ensure that your hypervisor has AVX enabled.

Architecture

Each container:

Provides the ability to transcribe speech data in a predefined language from a live stream or a recorded

audio file. The container will receive audio input using a WebSocket interface, and will provide the

following output:

Words in the transcript

Word confidence

Timing information

6

Multiple instances of the container can be run on the same Docker host. This enables scaling of a single

language or multiple-languages as required

All data is transitory, once a container completes its transcription it removes all record of the operation,

no data is persisted.

Accessing the Image

The Speechmatics Docker images are obtainable from the Speechmatics Docker repository (jfrog.io). If you do not

have a Speechmatics software repository account or have lost your details, please contact Speechmatics support

support@speechmatics.com.

The latest information about the containers can be found in the solutions section of the support portal. If a

support account is not available or the Containers section is not visible in the support portal, please contact

Speechmatics support support@speechmatics.com for help.

Prior to pulling any Docker images, the following must be known:

Speechmatics Docker URL – provided by the Speechmatics team

Image name (which usually includes the language code of the target language, e.g. en for English or de

for German)

Image tag - which identifies the image version

Getting the Image

After gaining access to the relevant details for the Speechmatics software repository, follow the steps below to

login and pull the Docker images that are required.

Software Repository Login

Ensure the Speechmatics Docker URL and software repository username and password are available. The endpoint

being used will require Docker to be installed. For example:

docker login https://speechmatics-docker-example.jfrog.io

You will be prompted for username and password. If successful, you will see the response:

Login Succeeded

If unsuccessful, please verify your credentials and URL. If problems persist, please contact Speechmatics support.

Pulling the Image

To pull the Docker image to the local environment follow the instructions below. Each supported language pack

comes as a different Docker image, so the process will need to be repeated for each required language.

Example pulling Global English (en) with the {{ book.product.version }} TAG:

docker pull speechmatics-docker-example.jfrog.io/rt-asr-transcriber-en:1.0.0

Example pulling Spanish (es) with the {{ book.product.version }} TAG:

docker pull speechmatics-docker-example.jfrog.io/rt-asr-transcriber-es:1.0.0

The image will start to download. This could take a while depending on your connection speed.

Note: Speechmatics require all customers to cache a copy of the Docker image(s) within their own environment.

Please do not pull directly from the Speechmatics software repository for each deployment.

mailto:support@speechmatics.com
https://support.speechmatics.com/
mailto:support@speechmatics.com

7

Licensing

TODO

Using the Container

Once the Docker image has been pulled into a local environment, it can be started using the Docker run

command. More details about operating and managing the container are available in the Docker API

documentation.

Here's a couple of examples of how to start the container from the command-line:

docker run -p 9000:9000 -p 8001:8001 speechmatics-docker-example.jfrog.io/rt-asr-

transcriber-en:1.0.0

docker run -p 9000:9000 -p 8001:8001 speechmatics-docker-example.jfrog.io/rt-asr-

transcriber-es:1.0.0

The Docker run options used are:

Name Description

--port, -p Expose ports on the container so that they are accessible from the host

See Docker docs for a full list of the available options.

Input Modes

The supported method for passing audio to a container is to use a Websocket. A session is setup with

configuration parameters passed in using a StartRecognition message, and thereafter audio is sent to the

container in binary chunks, with transcripts being returned in an AddTranscript message.

In the AddTranscript message individual result segments are returned, corresponding to audio segments

defined by pauses (and other latency measurements).

Output

The results list in the V2 Output format are sorted by increasing start_time , with a supplementary rule to sort

by decreasing end_time . Confidence precision is to 6 decimal places. See below for an example:

{

 "message": "AddTranscript",

 "format": "2.5",

 "metadata": {

 "transcript": "full tell radar",

 "start_time": 0.11,

 "end_time": 1.07

 },

 "results": [

 {

 "type": "word",

 "start_time": 0.11,

 "end_time": 0.40,

 "alternatives": [

 { "content": "full", "confidence": 0.7 }

]

https://docs.docker.com/engine/api/latest
https://docs.docker.com/engine/reference/commandline/run/

8

 },

 {

 "type": "word",

 "start_time": 0.41,

 "end_time": 0.62,

 "alternatives": [

 { "content": "tell", "confidence": 0.6 }

]

 },

 {

 "type": "word",

 "start_time": 0.65,

 "end_time": 1.07,

 "alternatives": [

 { "content":"radar", "confidence": 1.0 }

]

 }

]

}

Health service
The container is able to expose an HTTP health service, which offers startup, liveness and readiness probes. This

may be especially helpful if you are deploying the container into a Kubernetes cluster. If you are using Kubernetes,

we recommend that you also refer to the Kubernetes documentation around liveness and readiness probes

(https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/).

Enabling the health service

The health service is enabled by default and should run as a subprocess of the main entrypoint to the container.

Endpoints

The health service offers three endpoints:

The code examples below use the HTTPie tool

/started

This endpoint provides a startup probe. It can be queried using an HTTP GET request.

This probe indicates whether all services in the container have successfully started. Once it returns a successful

response code, it should never return an unsuccessful response code later.

Possible responses:

200 if all of the services in the container have successfully started.

503 otherwise.

A JSON object is also returned in the body of the response, indicating the status.

Example:

$ http get address.of.container:8001/started

HTTP/1.0 200 OK

Content-Type: application/json

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://httpie.org/

9

Date: Mon, 16 Mar 2020 17:28:46 GMT

Server: BaseHTTP/0.6 Python/3.5.2

{

 "started": true

}

/live

This endpoint provides a liveness probe. It can be queried using an HTTP GET request.

This probe indicates whether all services in the container are active. The services in the container send regular

updates to the health service, if they don't send an update for more than 10 seconds then they will be marked as

'dead' and this endpoint will return an unsuccessful response code. For example, if the WebSocket server in the

container was to crash, this endpoint should indicate that.

Possible responses:

200 if all of the services in the container have successfully started, and have recently sent an update to

the health service.

503 otherwise.

A JSON object is also returned in the body of the response, indicating the status.

Example:

$ http get address.of.container:8001/live

HTTP/1.0 200 OK

Content-Type: application/json

Date: Mon, 16 Mar 2020 17:36:35 GMT

Server: BaseHTTP/0.6 Python/3.5.2

{

 "alive": true

}

/ready

This endpoint provides a readiness probe. It can be queried using an HTTP GET request.

This probe indicates whether the container is currently transcribing something; if the server is handling at least

one audio stream then it is considered not ready.

We recommend limiting our container to one audio stream at a time, and using this probe as a scaling mechanism.

That said, the container can handle multiple concurrent audio streams.

Note: The readiness check is accurate within a 2 second resolution. If you do use this probe for load balancing, be

aware that bursts of traffic within that 2 second window could all be allocated to a single container since it's

readiness state will not change.

Possible responses:

200 if the container is not currently transcribing audio.

503 otherwise.

A JSON object is also returned in the body of the response, indicating the status.

Example:

10

$ http get address.of.container:8001/ready

HTTP/1.0 200 OK

Content-Type: application/json

Date: Mon, 16 Mar 2020 17:37:00 GMT

Server: BaseHTTP/0.6 Python/3.5.2

{

 "ready": true

}

Troubleshooting

Enabling Logging

If you are seeing problems then we recommend that you open a ticket with Speechmatics support:

support@speechmatics.com. Please include the logging output from the container if you do open a ticket, and

ideally enable verbose logging.

Verbose logging is enabled by running the container with the environment variable DEBUG set to true .

e.g.

docker run -e DEBUG=true speechmatics-docker-example.jfrog.io/rt-asr-transcriber-en:1.0.0

Common Problems

You should ensure, when using the config object in the StartRecognition message, that the JSON is correctly

formatted.

Real-time Container API Guide
This page specifies the Real-time API at its current state. The basic elements in the communication are the

following:

Client - An application connecting to the API, providing the audio and processing the transcripts received

from the Server.

Server (also called API) - An entry point of the API, allows external connections and provides the

transcripts back.

Worker - An internal speech recognizer. This is an internal entity that actually runs the heavy speech

recognition.

This is a specification for Speechmatics Real-time API version 2.7

Client ↔ API endpoint

The communication is done using WebSockets, which are implemented in most of the modern web-browsers, as

well as in many common programming languages (namely C++ and Python, for instance using

http://autobahn.ws/).

Messages

Each message that the Server accepts is a stringified JSON object with the following fields:

message (String): The name of the message we are sending. Any other fields depend on the value of the

message and are described below.

The messages sent by the Server to a Client are stringified JSON objects as well.

mailto:support@speechmatics.com
http://autobahn.ws/

11

The only exception is a binary message sent from the Client to the Server containing a chunk of audio which will

be referred to as AddAudio .

The following values of the message field are supported:

StartRecognition

Initiates recognition, based on details provided in the following fields:

message: "StartRecognition"

audio_format (Object:AudioType): Required. Audio stream type you are going to send: see Supported

audio types.

transcription_config (Object:TranscriptionConfig): Required. Set up configuration values for this

recognition session, see Transcription config.

A StartRecognition message must be sent exactly once after the WebSocket connection is opened. The client

must wait for a RecognitionStarted message before sending any audio.

In case of success, a message with the following format is sent as a response:

message: "RecognitionStarted"

id (String): Required. A randomly-generated GUID which acts as an identifier for the session. e.g.

"807670e9-14af-4fa2-9e8f-5d525c22156e".

In case of failure, an error message is sent, with type being one of the following: invalid_model ,

invalid_audio_type , not_authorised , insufficient_funds , not_allowed , job_error .

An example of the StartRecognition message:

{

 "message": "StartRecognition",

 "audio_format": {

 "type": "raw",

 "encoding": "pcm_f32le",

 "sample_rate": 16000

 },

 "transcription_config": {

 "language": "en",

 "output_locale": "en-US",

 "diarization": "speaker_change",

 "max_delay": 3.5,

 "max_delay_mode": "flexible",

 "enable_partials": true,

 }

}

Explaining Max Delay Mode

Users can specify the latency of the Real-time Speechmatics engine using the max_delay parameter. If a value

of '5' was chosen, this would mean that transcripts would always be returned in 5 seconds from the word first

being spoken. This happens even if a word is detected that may overrun that threshold. In some cases this can

lead to inaccuracies in recognition and in finalised transcripts. This can be especially noticeable with key entities

such as numerals, currencies, and dates.

max_delay_mode allows a greater flexibility in this latency only when a potential entity has been detected.

Entities are common concepts such as numbers, currencies and dates, and can be seen in more detail here.

http://localhost:61730/entities/

12

There are two potential options for max_delay_mode : fixed and flexible . If no option is chosen, the default

is flexible . Where an entity is detected with flexible , the latency of a transcript may exceed the threshold

specified in max_delay , however the recognition of entities will be more accurate. If a user specifies fixed , the

transcript will be returned in segments that will never exceed the max_delay threshold, even if this causes

inaccuracies in entity recognition.

SetRecognitionConfig

Allows the Client to configure the recognition session even after the initial StartRecognition message without

restarting the connection. This is only supported for certain parameters.

message: "SetRecognitionConfig"

transcription_config (Object:TranscriptionConfig): A TranscriptionConfig object containing the new

configuration for the session, see Transcription config.

The following is an example of such a configuration message:

{

 "message": "SetRecognitionConfig",

 "transcription_config": {

 "language": "en",

 "max_delay": 3.5,

 "enable_partials": true

 }

}

Note: The language property is a mandatory element in the transcription_config object; however it is not

possible to change the language mid-way through the session (it will be ignored if you do). It is only possible to

modify the following settings through a SetRecognitionConfig message after the initial StartRecognition

message:

max_delay

max_delay_mode

enable_partials

If you wish to alter any other parameters you must terminate the session and restart with the altered configuration.

Attempting otherwise will result in an error.

The example above starts a session with the Global English model ready to consume raw PCM encoded audio with

float samples at 16kHz. It also includes an additional_vocab list containing the names of different types of

pasta. speaker_change diarization is enabled, and partials are enabled meaning that AddPartialTranscript

messages will be received as well as AddTranscript messages. Punctuation is configured to restrict the set of

punctuation marks that will be added to only commas and full stops.

AddAudio

Adds more audio data to the recognition job started on the WebSocket using StartRecognition . The server will

only accept audio after it is initialized with a job, which is indicated by a RecognitionStarted message. Only

one audio stream in one format is currently supported per WebSocket (and hence one recognition job).

AddAudio is a binary message containing a chunk of audio data and no additional metadata.

AudioAdded

If the AddAudio message is successfully received, an AudioAdded message is sent as a response. This message

confirms that the Server has accepted the data and will make a corresponding Worker process it. If the Client

13

implementation holds the data in an internal buffer to resubmit in case of an error, it can safely discard the

corresponding data after this message. The following fields are present in the response:

message: "AudioAdded"

seq_no (Int): Required. An incrementing number which is equal to the number of audio chunks that the

server has processed so far in the session. The count begins at 1 meaning that the 5th AddAudio

message sent by the client, for example, should be answered by an AudioAdded message with seq_no

equal to 5.

Possible errors:

data_error , job_error , buffer_error

When sending audio faster than real time (for instance when sending files), make sure you don't send too much

audio ahead of time. For large files, this causes the audio to fill out networking buffers, which might lead to

disconnects due to WebSocket ping/pong timeout. Use AudioAdded messages to keep track what messages are

processed by the engine, and don't send more than 10s of audio data or 500 individual AddAudio messages ahead

of time (whichever is lower).

Implementation details

Under special circumstances, such as when the client is sending the audio data faster than real time, the Server

might read the data slower than the Client is sending it. The Server will not read the binary AddAudio message if

it is larger than the internal audio buffer on the Server. Note that for each Worker, there is a separate buffer. In

that case, the server will read any messages coming in on the WebSocket, until enough space is made in the

buffer by passing the data to a corresponding Worker. The Client will only receive the corresponding AudioAdded

response message once the binary data is read. The WebSocket might eventually fill all the TCP buffers on the

way, causing a corresponding WebSocket to fail to write and close the connection with prejudice. The Client can

use the bufferedAmount attribute of the WebSocket to prevent this.

AddTranscript

This message is sent from the Server to the Client, when the Worker has provided the Server with a segment of

transcription output. It contains the transcript of a part of the audio the Client has sent using AddAudio - the

final transcript. These messages are also referred to as finals. Each message corresponds to the audio since the

last AddTranscript message. The transcript is final - any further AddTranscript or AddPartialTranscript

messages will only correspond to the newly processed audio. An AddTranscript message is sent when we

reach an endpoint (end of a sentence or a phrase in the audio), or after 10s if we haven't reached such an event.

This timeout can be further configured by setting transcription_config.max_delay in the

StartRecognition message.

message: "AddTranscript"

metadata (Object): Required.

start_time (Number): Required. An approximate time of occurrence (in seconds) of the audio

corresponding to the beginning of the first word in the segment.

end_time (Number): Required. An approximate time of occurrence (in seconds) of the audio

corresponding to the ending of the final word in the segment.

transcript (String): Required. The entire transcript contained in the segment in text format.

Providing the entire transcript here is designed for ease of consumption; we have taken care of all

the necessary formatting required to concatenate the transcription results into a block of text.

This transcript lacks the detailed information however which is contained in the results field of

the message - such as the timings and confidences for each word.

results (List:Object):

type (String): Required. One of 'word', 'entity', 'punctuation' or 'speaker_change'. 'word' results

represent a single word. 'punctuation' results represent a single punctuation symbol. 'word' and

'punctuation' results will both have one or more alternatives representing the possible

https://www.w3.org/TR/websockets/#concept-websocket-close-fail
https://www.w3.org/TR/websockets/#dom-websocket-bufferedamount

14

alternatives we think the word or punctuation symbol could be. 'entity' is only a possible type if

enable_entities is set to true and indicates a formatted entity. 'speaker_change' results

however will have an empty alternatives field. 'speaker_change' results will only occur when

using speaker_change diarization.

start_time (Number): Required. The start time of the result relative to the start_time of the

whole segment as described in metadata .

end_time (Number): Required. The end time of the result relative to the start_time of the

segment in the message as described in metadata . Note that punctuation symbols and

speaker_change results are considered to be zero-duration and thus for those results

start_time is equal to end_time .

is_eos (Boolean): Optional. Only present for 'punctuation' results. This indicates whether or not

the punctuation mark is considered an end-of-sentence symbol. For example full-stops are an

end-of-sentence symbol in English, whereas commas are not. Other languages, such as

Japanese, may use different end-of-sentence symbols.

alternatives (List:Object): Optional. For 'word' and 'punctuation' results this contains a list of

possible alternative options for the word/symbol.

content (String): Required. A word or punctuation mark. When enable_entities is

requested this can be multiple words with spaces, for example "17th of January 2022".

confidence (Number): Required. A confidence score assigned to the alternative.

Ranges from 0.0 (least confident) to 1.0 (most confident).

display (Object): Optional. Information about how the word/symbol should be

displayed.

direction (String): Required. Either 'ltr' for words that should be displayed

left-to-right, or 'rtl' vice versa.

language (String): Optional. The language that the alternative word is assumed to be

spoken in. Currently this will always be equal to the language that was requested in the

initial StartRecognition message.

tags (array): Optional. Only [disfluency] and [profanity] are displayed. This is a

set list of profanities and disfluencies respecitvely that cannot be altered by the end

user. [disfluency] is only present in English, and [profanity] is present in English,

Spanish, and Italian.

entity_class (String): Optional. If enable_entities is requested in the

startTranscriptionConfig request, and an entity is detected, entity_class will represent the

type of entity the word(s) have been formatted as.

spoken_form (List:Object): Optional. If enable_entities is requested in the

startTranscriptionConfig request, and an entity is detected, this is a list of words without

formatting applied. This follows the results list API formatting.

written_form (List:Object): Optional. If enable_entities is requested in the

startTranscriptionConfig request, and an entity is detected, this is a list of formatted words that

matches the entity content but with individual estimated timing and confidences. This follows

the results list API formatting.

AddPartialTranscript

A partial-transcript message. The structure is the same as AddTranscript . A partial transcript is a transcript

that can be changed and expanded by a future AddTranscript or AddPartialTranscript message and

corresponds to the part of audio since the last AddTranscript message. For AddPartialTranscript

messages the confidence field for alternatives has no meaning and will always be equal to 0.

Partials will only be sent if transcription_config.enable_partials is set to true in the

StartRecognition message.

15

EndOfStream

This message is sent from the Client to the API to announce that it has finished sending all the audio that it

intended to send. No more AddAudio message are accepted after this message. The Server will finish processing

the audio it has received already and then send an EndOfTranscript message. This message is usually sent at the

end of file or when the microphone input is stopped.

message: "EndOfStream"

last_seq_no (Int): Required. The total number of audio chunks sent (in the AddAudio messages).

EndOfTranscript

Sent from the API to the Client when the API has finished all the audio, as marked with the EndOfStream

message. The API sends this only after it sends all the corresponding AddTranscript messages first. Upon

receiving this message the Client can safely disconnect immediately because there will be no more messages

coming from the API.

Supported audio types

An AudioType object always has one mandatory field type , and potentially more mandatory fields based on the

value of type . The following types are supported:

type: "raw"

Raw audio samples, described by the following additional mandatory fields:

encoding (String): Encoding used to store individual audio samples. Currently supported values:

pcm_f32le - Corresponds to 32 bit float PCM used in the WAV audio format, little-endian

architecture. 4 bytes per sample.

pcm_s16le - Corresponds to 16 bit signed integer PCM used in the WAV audio format, little-

endian architecture. 2 bytes per sample.

mulaw - Corresponds to 8 bit µ-law (mu-law) encoding. 1 byte per sample.

sample_rate (Int): Sample rate of the audio

Please ensure when sending raw audio samples in real-time that the samples are undivided. For example, if you

are sending raw audio via pcm_f32le , the sample should always contain 4 bytes. Here, if a sample did not

contain 4 bytes, and then an EndOfStream message were sent, this would then cause an error. Required byte sizes

per sample for each type of raw audio are listed above.

type: "file"

Any audio/video format supported by GStreamer. The AddAudio messages have to provide all the file contents,

including any headers. The file is usually not accepted all at once, but segmented into reasonably sized messages.

Example audio_format field value: audio_format: {type: "raw", encoding: "pcm_s16le",

sample_rate: 44100}

Transcription config

A TranscriptionConfig object specifies various configuration values for the recognition engine. All the values

are optional, using default values when not provided.

language (String): Required. Language model to process the audio input, normally specified as an ISO

language code e.g. 'en'.

additional_vocab (List:AdditionalWord): Optional. Configure additional words. See Additional words.

Default is an empty list. You should be aware that there is a performance penalty (latency degradation and

memory increase) from using additional_vocab , especially if you intend to load in a large word list.

16

When initialising a session that uses additional_vocab in the config you should expect a delay of up to

15 seconds, and an additional 800MB to 1700MB of memory (depending on the size of the list).

diarization (String): Optional. The speaker diarization method to apply to the audio. The default is

"none" indicating that no diarization will be performed. An alternative option is "speaker_change"

diarization in which the ASR system will attempt to detect any changes in speaker. Speaker changes are

indicated in the results using an object with a type set to speaker_change . Speaker change is a beta

feature.

enable_partials (Boolean): Optional. Whether or not to send partials (i.e. AddPartialTranscript

messages) as well as finals (i.e. AddTranscript messages). The default is false .

max_delay (Number): Optional. Maximum delay in seconds between receiving input audio and returning

partial transcription results. The default is 10. The minimum and maximum values are 2 and 20.

output_locale (String): Optional. Configure output locale. See Output locale. Default is an empty

string.

punctuation_overrides (Object:PunctuationOverrides): Optional. Options for controlling punctuation

in the output transcripts. See Punctuation overrides.

speaker_change_sensitivity (Number): Optional.: Controls how responsive the system is for

potential speaker changes. The value ranges between zero and one. High value indicates high sensitivity,

i.e. prefer to indicate a speaker change if in doubt. The default is 0.4. This setting is only applicable when

using "diarization": "speaker_change" .

operating_point (String): Optional. Which model within the language pack you wish to use for

transcription with a choice between standard and enhanced . See API How-to Guide for more details

enable_entities (Boolean): Optional. Whether a user wishes for entities to be identified with additional

spoken and written word format. Supported values true or false . The default is false .

Requesting an enhanced model

Speechmatics supports two different models within each language pack; a standard or an enhanced model. The

standard model is the faster of the two, whilst the enhanced model provides a higher accuracy, but a slower

turnaround time.

The enhanced model is a premium model. Please contact your account manager or Speechmatics if you would like

access to this feature.

An example of requesting the enhanced model is below

{

 "message": "StartRecognition",

 "audio_format": {

 "type": "raw",

 "encoding": "pcm_f32le",

 "sample_rate": 16000

 },

{

 "transcription_config": {

 "language": "en",

 "operating_point": "enhanced"

 }

}

Please note: standard , as well as being the default option, can also be explicitly requested with the

operating_point parameter.

Additional words

17

Additional words expand the standard recognition dictionary with a list of words or phrases called additional

words. An additional word can also be a phrase, as long as individual words in the phrase are separated by

spaces. This is the custom dictionary supported in other Speechmatics products. A pronunciation of those words

is generated automatically or based on a provided sounds_like field. This is intended for adding new words and

phrases, such as domain-specific terms or proper names. Better results for domain-specific words that contain

common words can be achieved by using phrases rather than individual words (such as action plan).

AdditionalWord is either a String (the additional word) or an Object . The object form was introduced in

0.7.0. The object form has the following fields:

content (String): The additional word.

sounds_like (List:String): A list of words with similar pronunciation. Each word in this list is used as one

alternative pronunciation for the additional word. These don't have to be real words - only their

pronunciation matters. This list must not be empty. Words in the list must not contain whitespace

characters. When sounds_like is used, the pronunciation automatically obtained from the content

field is not used.

The String form "word" corresponds with the following Object form: {"content": "word",

"sounds_like": ["word"]} .

Full example of additional_vocab :

 "additional_vocab": [

 "speechmatics",

 {"content": "gnocchi", "sounds_like": ["nyohki", "nokey", "nochi"]},

 {"content": "CEO", "sounds_like": ["seeoh"]},

 "financial crisis"

]

To clarify, the following ways of adding the word speechmatics are equivalent with all using the default

pronunciation:

�. "additional_vocab": ["speechmatics"]

�. "additional_vocab": [{"content": "speechmatics"}]

�. "additional_vocab": [{"content": "speechmatics", "sounds_like": ["speechmatics"]}]

Output locale

Change the spellings of the transcription according to the output locale language code. If the selected language

pack supports a different output locale, this config value can be used to provide spelling for the transcription in

one of these locales. For example, the English language pack currently supports locales: en-GB , en-US and

en-AU . The default value for output_locale is an empty string that means the transcription will use its default

configuration (without spellings being altered in the transcription).

The following locales are supported for Chinese Mandarin. The default is simplified Mandarin.

Simplified Mandarin (cmn-Hans)

Traditional Mandarin (cmn-Hant)

Punctuation overrides

This object contains settings for configuring punctuation in the transcription output.

permitted_marks (List:String) Optional. The punctuation marks which the client is prepared to accept

in transcription output, or the special value 'all' (the default). Unsupported marks are ignored. This value

is used to guide the transcription process.

18

sensitivity (Number) Optional. Ranges between zero and one. Higher values will produce more

punctuation. The default is 0.5.

Error messages

Error messages have the following fields:

message: "Error"

code (Int): Optional. A numerical code for the error. See below. TODO: This is not yet finalised.

type (String): Required. A code for the error message. See the list of possible errors below.

reason (String): Required. A human-readable reason for the error message.

Error types

type: "invalid_message"

The message received was not understood.

type: "invalid_model"

Unable to use the model for the recognition. This can happen if the language is not supported at

all, or is not available for the user.

type: "invalid_config"

The config received contains some wrong/unsupported fields.

type: "invalid_audio_type"

Audio type is not supported, is deprecated, or the audio_type is malformed.

type: "invalid_output_format"

Output format is not supported, is deprecated, or the output_format is malformed.

type: "not_authorised"

User was not recognised, or the API key provided is not valid.

type: "insufficient_funds"

User doesn't have enough credits or any other reason preventing the user to be charged for the

job properly.

type: "not_allowed"

User is not allowed to use this message (is not allowed to perform the action the message would

invoke).

type: "job_error"

Unable to do any work on this job, the Worker might have timed out etc.

type: "data_error"

Unable to accept the data specified - usually because there is too much data being sent at once

type: "buffer_error"

Unable to fit the data in a corresponding buffer. This can happen for clients sending the input

data faster then real-time.

type: "protocol_error"

Message received was syntactically correct, but could not be accepted due to protocol

limitations. This is usually caused by messages sent in the wrong order.

type: "unknown_error"

An error that did not fit any of the types above.

Note that invalid_message , protocol_error and unknown_error can be triggered as a response to any

type of messages.

The transcription is terminated and the connection is closed after any error.

19

Warning messages

Warning messages have the following fields:

message: "Warning"

code (Int): Optional. A numerical code for the warning. See below. TODO: This is not yet finalised.

type (String): Required. A code for the warning message. See the list of possible warnings below.

reason (String): Required. A human-readable reason for the warning message.

Warning types

type: "duration_limit_exceeded"

The maximum allowed duration of a single utterance to process has been exceeded. Any

AddAudio messages received that exceed this limit are confirmed with AudioAdded, but are

ignored by the transcription engine. Exceeding the limit triggers the same mechanism as

receiving an EndOfStream message, so the Server will eventually send an EndOfTranscript

message and suspend.

It has the following extra field:

duration_limit (Number): The limit that was exceeded (in seconds).

Info messages

Info messages denote additional information sent form the Server to the Client. Those are similar to Error and

Warning messages in syntax, but don't actually denote any problem. The Client can safely ignore these

messages or use them for additional client-side logging.

message: "Info"

code (Int): Optional. A numerical code for the informational message. See below. TODO: This is not yet

finalised.

type (String): Required. A code for the info message. See the list of possible info messages below.

reason (String): Required. A human-readable reason for the informational message.

Info message types

type: "recognition_quality"

Informs the client what particular quality-based model is used to handle the recognition.

It has the following extra field:

quality (String): Quality-based model name. It is one of "telephony" ,

"broadcast" . The model is selected automatically, for high-quality audio (12kHz+) the

broadcast model is used, for lower quality audio the telephony model is used.

** type: "model_redirect"

Informs the client that a deprecated language code has been specified, and will be handled with a

different model. For example, if the model parameter is set to one of en-US, en-GB, or en-AU,

then the request may be internally redirected to the Global English model (en).

** type: "deprecated"

Informs about using a feature that is going to be removed in a future release.

Example communication

The communication consists of 3 stages - initialization, transcription and a disconnect handshake.

20

On initialization, the StartRecognition message is sent from the Client to the API and the Client must block

and wait until it receives a RecognitionStarted message.

Afterwards, the transcription stage happens. The client keeps sending AddAudio messages. The API

asynchronously replies with AudioAdded messages. The API also asynchronously sends

AddPartialTranscript and AddTranscript messages.

Once the client doesn't want to send any more audio, the disconnect handshake is performed. The Client sends

an EndOfStream message as it's last message. No more messages are handled by the API afterwards. The API

processes whatever audio it has buffered at that point and sends all the AddTranscript and

AddPartialTranscript messages accordingly. Once the API processes all the buffered audio, it sends an

EndOfTranscript message and the Client can then safely disconnect.

Note: In the example below, -> denotes a message sent by the Client to the API, <- denotes a message send by

the API to the Client. Any comments are denoted "[like this]" .

-> {"message": "StartRecognition", "audio_format": {"type": "file"},

 "transcription_config": {"language": "en", "enable_partials": true}}

 <- {"message": "RecognitionStarted", "id": "807670e9-14af-4fa2-9e8f-5d525c22156e"}

-> "[binary message - AddAudio 1]"

-> "[binary message - AddAudio 2]"

 <- {"message": "AudioAdded", "seq_no": 1}

 <- {"message": "Info", "type": "recognition_quality", "quality": "broadcast", "reason":

"Running recognition using a broadcast model quality."}

 <- {"message": "AudioAdded", "seq_no": 2}

-> "[binary message - AddAudio 3]"

 <- {"message": "AudioAdded", "seq_no": 3}

"[asynchronously received transcripts:]"

 <- {"message": "AddPartialTranscript", "metadata": {"start_time": 0.0, "end_time":

0.5399999618530273, "transcript": "One"},

 "results": [{"alternatives": [{"confidence": 0.0, "content": "One"}],

 "start_time": 0.47999998927116394, "end_time": 0.5399999618530273,

"type": "word"}

]}

 <- {"message": "AddPartialTranscript", "metadata": {"start_time": 0.0, "end_time":

0.7498992613545260, "transcript": "One to"},

 "results": [{"alternatives": [{"confidence": 0.0, "content": "One"}],

 "start_time": 0.47999998927116394, "end_time": 0.5399999618530273,

"type": "word"},

 {"alternatives": [{"confidence": 0.0, "content": "to"}],

 "start_time": 0.6091238623430891, "end_time": 0.7498992613545260, "type":

"word"}

]}

 <- {"message": "AddPartialTranscript", "metadata": {"start_time": 0.0, "end_time":

0.9488123643240011, "transcript": "One to three"},

 "results": [{"alternatives": [{"confidence": 0.0, "content": "One"}],

 "start_time": 0.47999998927116394, "end_time": 0.5399999618530273,

21

"type": "word"},

 {"alternatives": [{"confidence": 0.0, "content": "to"}],

 "start_time": 0.6091238623430891, "end_time": 0.7498992613545260, "type":

"word"}

 {"alternatives": [{"confidence": 0.0, "content": "three"}],

 "start_time": 0.8022338627780892, "end_time": 0.9488123643240011, "type":

"word"}

]}

 <- {"message": "AddTranscript", "metadata": {"start_time": 0.0, "end_time":

0.9488123643240011, "transcript": "One two three."},

 "results": [{"alternatives": [{"confidence": 1.0, "content": "One"}],

 "start_time": 0.47999998927116394, "end_time": 0.5399999618530273,

"type": "word"},

 {"alternatives": [{"confidence": 1.0, "content": "to"}],

 "start_time": 0.6091238623430891, "end_time": 0.7498992613545260, "type":

"word"}

 {"alternatives": [{"confidence": 0.96, "content": "three"}],

 "start_time": 0.8022338627780892, "end_time": 0.9488123643240011, "type":

"word"}

 {"alternatives": [{"confidence": 1.0, "content": "."}],

 "start_time": 0.9488123643240011, "end_time": 0.9488123643240011, "type":

"punctuation", "is_eos": true}

]}

"[closing handshake]"

-> {"message":"EndOfStream","last_seq_no":3}

 <- {"message": "EndOfTranscript"}

22

Examples how to use the V2 API
The V2 WebSocket Speech API aligns with other Speechmatics platforms such as the Batch Virtual Appliance and

Speechmatics Cloud Offering.

WebSocket URI

To use the V2 API you use the '/v2' endpoint for the URI, for example:

ws://rt-asr.example.com:9000/v2

If you are using the Real-time Container then you will need to use the ws:// scheme, for example: ws://rt-

asr.example.com:9000/v2 . If you need to access the Real-time Container over a secure WebSocket connection

from you client, then you'll need to consider an SSL offload from a load-balancer or similar.

Session Configuration

23

The V2 API is configured by sending a StartRecognition message initially when the WebSocket connection

begins. We have designed the format of this message to be very similar to the config.json object that has been

used for a while now with the Speechmatics batch mode platforms (Batch Virtual Appliance, Batch Container and

Cloud Offering). The transcription_config section of the message should be almost identical between the

two modes. There are some minor differences (for example batch features a different set of diarization options,

and real-time features some settings which don't apply to batch such as max_delay).

TranscriptionConfig

A transcription_config structure is used to specify various configuration values for the recognition engine

when the StartRecognition message is sent to the server. All values apart from language are optional.

Here's an example of calling the StartRecognition message with this structure:

{

 "message": "StartRecognition",

 "transcription_config": {

 "language": "en"

 },

 "audio_format": {

 "type": "raw",

 "encoding": "pcm_f32le",

 "sample_rate": 16000

 }

}

AddAudio

Once the websocket session is setup and you've successfully called StartRecognition you'll receive a

RecognitionStarted message from server. You can then just to send the binary audio chunks, which we refer to

as AddAudio messages.

You would replace this in the V2 API with much simpler code:

// NEW V2 EXAMPLE

function addAudio(audioData) {

 ws.send(audioData);

 seqNoIn++;

}

We recommend that you do not send more than 10 seconds of audio data or 500 individual AddAudio messages

ahead of time.

Final and Partial Transcripts

The AddTranscript and AddPartialTranscript messages from the server output a JSON format which

aligns with the JSON output format used by other Speechmatics products. There is a now a results list which

contains the transcribed words and punctuation marks along with timings and confidence scores. Here's an

example of a final transcript output:

{

 "message":"AddTranscript",

 "results":[

 {

 "start_time":0.11670026928186417,

 "end_time":0.4049381613731384,

24

 "alternatives":[

 {

 "content":"gale",

 "confidence":0.7034434080123901

 }

],

 "type":"word"

 },

 {

 "start_time":0.410246878862381,

 "end_time":0.6299981474876404,

 "alternatives":[

 {

 "content":"eight",

 "confidence":0.670033872127533

 }

],

 "type":"word"

 },

 {

 "start_time":0.6599999666213989,

 "end_time":1.0799999237060547,

 "alternatives":[

 {

 "content":"becoming",

 "confidence":1.0

 }

],

 "type":"word"

 },

 {

 "start_time":1.0799999237060547,

 "end_time":1.6154180765151978,

 "alternatives":[

 {

 "content":"cyclonic",

 "confidence":1.0

 }

],

 "type":"word"

 },

 {

 "start_time":1.6154180765151978,

 "is_eos":true,

 "end_time":1.6154180765151978,

 "alternatives":[

 {

 "content":".",

 "confidence":1.0

 }

],

 "type":"punctuation"

 }

],

25

 "metadata":{

 "transcript":"gale eight becoming cyclonic.",

 "start_time":190.65994262695312,

 "end_time":194.46994256973267

 },

 "format":"2.7"

}

You can use the metadata.transcript property to get the complete final transcript as a chunk of plain text.

The format property describes the exact version of the transcription output format, which is currently 2.7. This

may change in future releases if the output format is updated.

Requesting an enhanced model

Speechmatics supports two different models within each language pack; a standard or an enhanced model. The

standard model is the faster of the two, whilst the enhanced model provides a higher accuracy, but a slower

turnaround time.

The enhanced model is a premium model. Please contact your account manager or Speechmatics if you would like

access to this feature.

An example of requesting the enhanced model is below

{

 "message": "StartRecognition",

 "audio_format": {

 "type": "raw",

 "encoding": "pcm_f32le",

 "sample_rate": 16000

 },

{

 "transcription_config": {

 "language": "en",

 "operating_point": "enhanced"

 }

}

Please note: standard , as well as being the default option, can also be explicitly requested with the

operating_point parameter.

Advanced Punctuation

Some language models (Arabic, Danish, Dutch, English, French, German, Malay, Spanish, Swedish and Turkish

currently) support advanced punctuation. This uses machine learning techniques to add in more naturalistic

punctuation, improving the readability of your transcripts. As well as putting punctuation marks in more

naturalistic positions in the output, additional punctuation marks such as commas (,) exclamation marks (!) and

question marks (?) will also appear.

There is no need to explicitly enable this in the configuration; languages that support advanced punctuation will

automatically output these marks. If you do not want to see these punctuation marks in the output, then you can

explicitly control this through the punctuation_overrides setting within the transcription_config object,

for example:

 "transcription_config": {

 "language": "en",

 "punctuation_overrides": {

26

 "permitted_marks": ["."]

 }

 }

Note that changing the punctuation setting from the default can take a couple of seconds, which means if the user

is using non-default neural punctuation sensitivity, after they send the StartRecognition message, there will

be a slight delay (2-3 seconds) before the RecognitionStarted message is sent back.

The JSON output places punctuation marks in the results list marked with a type of "punctuation" . So you

can also filter on the output if you want to modify or remove punctuation.

Example Usage
This section provides some client code samples that show simple usage of the V2 WebSockets Speech API. It

shows how you can test your Real-Time Appliance or Container using a minimal WebSocket client.

JavaScript

The basic usage of the WebSockets interface from a JavaScript client is shown in this section. In the first instance

you setup the connection to the server and define the various event handlers that are required:

var ws = new WebSocket('ws://rtc:9000/v2');

ws.binaryType = "arraybuffer";

ws.onopen = function(event) { onOpen(event) };

ws.onmessage = function(event) { onMessage(event) };

ws.onclose = function(event) { onClose(event) };

ws.onerror = function(event) { onError(event) };

Change the hostname from the above example to match the IP address or hostname of your Real-Time Appliance

or Container. The port used is 9000 and you need to make sure that you add '/v2' to the WebSocket URI. Note that

the Real-time Container only supports WebSocket (ws) protocol. You should also ensure that the binaryType

property of the WebSocket object is set to "arraybuffer" .

In the onopen handler you initiate the session by sending the StartRecognition message to the server, for

example:

function onOpen(evt) {

 var msg = {

 "message": "StartRecognition",

 "transcription_config": {

 "language": "en",

 "output_locale": "en-GB"

 },

 "audio_format": {

 "type": "raw",

 "encoding": "pcm_s16le",

 "sample_rate": 16000

 }

 };

 ws.send(JSON.stringify(msg));

}

27

An onmessage handler is where you will respond to the server-initiated messages sent by the appliance or

container, and decide how to handle them. Typically, this involves implementing functions to display or process

data that you get back from the server.

function onMessage(evt) {

 var objMsg = JSON.parse(evt.data);

 switch (objMsg.message) {

 case "RecognitionStarted":

 recognitionStarted(objMsg); // TODO

 break;

 case "AudioAdded":

 audioAdded(objMsg); // TODO

 break;

 case "AddPartialTranscript":

 case "AddTranscript":

 transcriptOutput(objMsg); // TODO

 break;

 case "EndOfTranscript":

 endTranscript(); // TODO

 break;

 case "Info":

 case "Warning":

 case "Error":

 showMessage(objMsg); // TODO

 break;

 default:

 console.log("UNKNOWN MESSAGE: " + objMsg.message);

 }

}

Once the WebSocket is initialized, the StartRecognition message is sent to the appliance or container to setup

the audio input. It is then a matter of sending audio data periodically using the AddAudio message.

Your AddAudio message will take audio from a source (for example microphone input, or an audio stream) and

pass it to the Real-Time Appliance or Container.

// Send audio data to the API using the AddData message.

function addAudio(audioData) {

 ws.send(audioData);

 seqNoIn++;

}

In this example we use a counter seqNoIn to keep track of the AddAudio messages we've sent.

A set of server-initiated transcript messages are triggered to indicate the availability of transcribed text:

AddTranscript

AddPartialTranscript

28

See above for changes to the JSON output schema in the V2 API. For full details of the output schema refer to the

AddTranscript section in the API reference.

Finally, the client should send an EndOfStream message and close the WebSocket when it terminates. This

should be done in order to release resources on the appliance or container and allow other clients to connect and

use resources.

The Mozilla developer network provides a useful reference to the WebSocket API.

Python

Standalone Real-Time Container Usage

If you are using the Real-Time Container, you can use a Python library called speechmatics-python . This library

is available on Github here. You can also use this library for the Real-Time Virtual Appliance.

The speechmatics-python library can be incorporated into your own applications, used as a reference for your

own client library, or called directly from the command line (CLI) like this (to pass a test audio file to the appliance

or container):

speechmatics transcribe --url ws://rtc:9000/v2 --lang en --ssl-mode none test.mp3

Note that configuration options are specified on the command-line as parameters, with a '_' character in the

configuration option being replaced by a '-'. The CLI option accepts an audio stream on standard input, meaning

that you can stream in a live microphone feed. To get help on the CLI use the following command:

speechmatics transcribe --help

The library depends on Python 3.7 or above, since it makes use of some of the newer asyncio features

introduced with Python 3.7.

Formatting Common Entities

Overview

Entities are commonly recognisable classes of information that appear in languages, for example numbers and

dates. Formatting these entities is commonly referred to as Inverse Text Normalisation (ITN). Using ITN,

Speechmatics will output entities in a predictable, consistent written form, reducing post-processing work

required aiming to make the transcript more readable.

The language pack will use these formatted entities by default in the transcription. Additional metadata about

these entities can be requested via the API including the spoken words without formatting and the entity class that

was used to format it.

Supported Languages

Entities are supported in the following languages:

Cantonese

Chinese Mandarin (Simplified and Traditional)

English

French

German

Hindi

Italian

http://localhost:61730/speech-api-guide#addtranscript
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://github.com/speechmatics/speechmatics-python

29

Japanese

Portuguese

Russian

Spanish

Using the enable_entities parameter

Speechmatics now includes an enable_entities parameter. This can be requested via the API. By default this is

false .

Changing enable_entities to true will enable a richer set of metadata in the JSON output only. Customers

can choose between the default written form, spoken form, or a mixture, for their own workflows.

The changes are as following:

A new type - entity in the JSON output in addition to word and punctuation . For example: "1.99"

would have a type of entity and a corresponding entity_class of decimal

The entity will contain the formatted text in the content section, like other words and punctuation

The content can include spaces, non-breaking spaces, and symbols (e.g. $/£/%)

A new output element entity , entity_class has been introduced. This provides more detail about

how the entity has been formatted. A full list of entity classes is provided below.

The start and end time of the entity will span all the words that make up that entity

The entity also contains two ways that the content will be output:

spoken_form - Each individual word within the entity, written out in words as it was spoken.

Each individual word has its own start time, end time, and confidence score. For example: "one",

"million", "dollars"

written_form - The same output as within entity content, with a type of word instead. If

there are spaces in the content it will be split into individual words. For example: "$1", "million"

Configuration example

Please see an example configuration file that would request entities:

{

 "message": "StartRecognition",

 "transcription_config": {

 "language": "en",

 "enable_entities": true

 }

}

Different entity classes

The following entity_classes can be returned. Entity classes indicate how the numerals are formatted. In some

cases, the choice of class can be contextual and the class may not be what was expected (for example "2001"

may be a "cardinal" instead of "date"). The number of entity_classes may grow or shrink in the future.

N.B. Please note existing behaviour for English where numbers from zero to 10 (excluding where they are output

as a decimal/money/percentage) are output as words is unchanged.

Entity

Class
Formatting Behaviour

Spoken Word Form

Example

Written Form

Example

alphanum A series of three or more triple seven five four 77754

30

alphanumerics, where an alphanumeric

is a digit less than 10, a character or

symbol

cardinal

Any number greater than ten is

converted to numbers. Numbers ten or

below remain as words. Includes

negative numbers

nineteen 19

credit card

A long series of spoken digits less than

10 are converted to numbers. Support

for common credit cards

one one one one two

two two two three three

three three four four four

four

1111222233334444

date

Day, month and year, or a year on its

own. Any words spoken in the date are

maintained (including "the" and "of")

fifteenth of January

twenty twenty two

15th of January

2022

decimal
A series of numbers divided by a

separator
eighteen point one two 18.12

fraction

Small fractions are kept as words

("half"), complex fractions are

converted to numbers separated by "/"

three sixteenths 3/16

money

Currency words are converted to

symbols before or after the number

(depending on the language)

twenty dollars $20

ordinal
Ordinals greater than 10 are output as

numbers
forty second 42nd

percentage
Numbers with a per cent have the per

cent converted to a % symbol
duecento percento 200%

span
A range expressed as "x to y" where x

and y correspond to another entity class

one hundred to two

hundred million pounds
100 to £200 million

time Times are converted to numbers eleven forty a m 11�40 a.m.

word
Entities that do not match a specific

class
hundreds hundreds

Output locale styling

Each language has a specific style applied to it for thousands, decimals and where the symbol is positioned for

money or percentages.

For example

English contains commas as separators for numbers above 9999 (example: "20,000"), the money symbol

at the start (example: "$10") and full stops for decimals (example: "10.5")

German contains full stops as separators for numbers above 9999 (example: "20.000"), the money

symbol comes after with a non-breaking space (example: "10 $") and commas for decimals (example:

"10,5")

French contains non-breaking spaces as separators for numbers above 9999 (example: "20 000"), the

money symbol comes after with a non-breaking space (example: "10 $") and commas for decimals

(example: "10,5")

31

Example output

Here is an example of a transcript requested with enable_entities set to true :

An entity that is "17th of January 2022", including spaces

The start and end times span the entire entity

An entity_class of date

The spoken_form is split into the following individual words: "seventeenth", "of", "January",

"twenty", "twenty", "two". Each word has its own start and end time

the written_form split into the following individual words: "17th", "of", "January", "2022". Each

word has its own start and end time

 [{

 "message": "AddTranscript",

 "format": 2.7,

 "results": [{

 "alternatives": [{

 "confidence": 1,

 "content": "17th of January 2022",

 "language": "en"

 }],

 "end_time": 3.0899999141693115,

 "entity_class": "date",

 "spoken_form": [{

 "alternatives": [{

 "confidence": 1,

 "content": "Seventeenth",

 "language": "en"

 }],

 "end_time": 1.3799999952316284,

 "start_time": 0.8399999737739563,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "of",

 "language": "en"

 }],

 "end_time": 1.4399999380111694,

 "start_time": 1.3799999952316284,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "January",

 "language": "en"

 }],

 "end_time": 1.9199999570846558,

 "start_time": 1.4399999380111694,

 "type": "word"

 },

32

 {

 "alternatives": [{

 "confidence": 1,

 "content": "twenty",

 "language": "en"

 }],

 "end_time": 2.25,

 "start_time": 1.9199999570846558,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "twenty",

 "language": "en"

 }],

 "end_time": 2.549999952316284,

 "start_time": 2.25,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 0.9504331946372986,

 "content": "two",

 "language": "en"

 }],

 "end_time": 3.0899999141693115,

 "start_time": 2.549999952316284,

 "type": "word"

 }

],

 "start_time": 0.8399999737739563,

 "type": "entity",

 "written_form": [{

 "alternatives": [{

 "confidence": 1,

 "content": "17th",

 "language": "en"

 }],

 "end_time": 1.1999999682108562,

 "start_time": 0.8399999737739563,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "of",

 "language": "en"

 }],

 "end_time": 1.559999962647756,

 "start_time": 1.1999999682108562,

 "type": "word"

 },

 {

33

 "alternatives": [{

 "confidence": 1,

 "content": "January",

 "language": "en"

 }],

 "end_time": 1.9199999570846558,

 "start_time": 1.559999962647756,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "2022",

 "language": "en"

 }],

 "end_time": 3.0899999141693115,

 "start_time": 1.9199999570846558,

 "type": "word"

 }

]

 }],

 "metadata": {

 "end_time": 5.16,

 "start_time": 0,

 "transcript": "17th of January 2022 "

 }

}]

If enable_entities is set to false , the output is as below:

 [{

 "message": "AddTranscript",

 "format": 2.7,

 "results": [{

 "alternatives": [{

 "confidence": 1,

 "content": "17th",

 "language": "en"

 }],

 "end_time": 1.1999999682108562,

 "start_time": 0.8399999737739563,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "of",

 "language": "en"

 }],

 "end_time": 1.559999962647756,

 "start_time": 1.1999999682108562,

 "type": "word"

 },

 {

34

 "alternatives": [{

 "confidence": 1,

 "content": "January",

 "language": "en"

 }],

 "end_time": 1.9199999570846558,

 "start_time": 1.559999962647756,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "2022",

 "language": "en"

 }],

 "end_time": 3.0899999141693115,

 "start_time": 1.9199999570846558,

 "type": "word"

 }

],

 "metadata": {

 "end_time": 5.16,

 "start_time": 0,

 "transcript": "17th of January 2022 "

 }

}]

