
1

Real-time Container 2.1.0

2

Table of Contents
Real-time Container

Important Notices

2.1.0

New

Improved

Fixed

Known Limitations

Supported Platforms

Installation

Prerequisites

Supported Languages

Real-time Container Quick Start Guide

System Requirements

Host recommended specs

AVX flags

Architecture

Supported File Formats

Accessing the Image

Getting the Image

Software Repository Login

Pulling the Image

Licensing

Using the Container

Input Modes

Output

Transcription duration information

Running a Container in Read-Only Mode

Running a Container as a non-root user

How to use a Shared Custom Dictionary Cache

Health service

Endpoints

/started

/live

/ready

Troubleshooting

Enabling Logging

Licensing

Common Problems

Real-time Container API Guide

Client ↔ API endpoint

Messages

StartRecognition

Explaining Max Delay Mode

SetRecognitionConfig

AddAudio

AudioAdded

Implementation details

AddTranscript

3

AddPartialTranscript

EndOfStream

EndOfTranscript

Supported audio types

Transcription config

Requesting an enhanced model

Additional words

Output locale

Punctuation overrides

Error messages

Error types

Warning messages

Warning types

Info messages

Info message types

Example communication

Examples how to use the V2 API

WebSocket URI

Session Configuration

TranscriptionConfig

AddAudio

Final and Partial Transcripts

Requesting an enhanced model

Domain Language Packs

Advanced punctuation

Example Usage

JavaScript

Python

Standalone Real-Time Container Usage

Formatting Common Entities

Overview

Supported Languages

Using the enable_entities parameter

Configuration example

Different entity classes

Output locale styling

Example output

4

Real-time Container

Important Notices

It is now necessary to use processors that support Advanced Vector Extensions 2 (AVX2) when running the

container in order to take advantage of latest performance optimisations.

It is also recommended when using the enhanced model to use hardware that supports the AVX512_VNNI flag

for optimal processing performance. For more information please see the quick start guide.

2.1.0

New

New English finance domain language pack. Provides accuracy improvements when specific financial

jargon is spoken in your audio. Refer to documentation here for more details

New language Ukrainian (uk)

16 Languages updated with additional punctuation marks for improved readability

The following languages now support (. ? , !): Bulgarian, Catalan, Czech, Greek, Finnish, Croatian,

Hungarian, Lithuanian, Latvian, Norwegian, Polish, Romanian, Slovak, Slovenian, Ukrainian,

Korean

Improved

Improved accuracy for French, including more data for Canadian French (fr-ca)

Improved accuracy for Portuguese, including more data for Brazilian Portuguese (pt-br)

Improved accuracy in standard operating point for Romanian, Hungarian, Danish, Slovakian, Croatian,

Bulgarian, Finnish, Slovenian, Lithuanian

Updated Danish, Norwegian and Swedish to remove undesired character sets

Improved accuracy in localised spelling for English output locale feature

Improved accuracy of percentage symbol recognition in French

Fixed

Fixes for English and Italian written form numeric entities

Fix for handling the issue where occasional end times of words could be before the start time

Known Limitations

The following are known issues in this release:

Issue

ID
Summary Detailed Description and Possible Workarounds

REQ-

10634

Putting "-" as an item

in additional vocab

configuration will

cause the container to

fail

Do not enter just a "-" on its own in Custom Dictionary either as an

additional vocab item or in the sounds_like property. Hyphens are still

supported when entered as part of phrases or words

REQ-

13240

Chinese (cmn)

container crashes

occasionally when

using certain

additional vocabulary

Do not use whitespace characters in additional vocabulary sounds_like

REQ- Audio Swapping Repeatedly audio swapping between 8kHz and 16kHz files can cause

http://localhost:63808/en/real-time-container/speech-api-guide/api-howto/#domain-language-packs

5

16256 between 8kHz and

16kHz causes memory

leak

an increase in memory over very long periods that causes the container

to crash. If memory usage in this scenario becomes excessive it is

recommended to restart the container

Supported Platforms

Docker 17.06.0+

Installation

Pull the container image from the Speechmatics Docker registry

Prerequisites
Docker (17.06.0 or above)

Login credentials (URL, username and password) for the Speechmatics Docker registry

Supported Languages

These are the General Availability (GA) release notes for the Real-time ASR container images. Following languages

are supported:

Language ISO Code

Arabic ar

Bulgarian bg

Catalan ca

Mandarin cmn

Czech cs

Danish da

German de

Greek el

Global English en

Global Spanish es

Finnish fi

French fr

Hindi hi

Croatian hr

Hungarian hu

Indonesian id

Italian it

Japanese ja

Korean ko

6

Lithuanian lt

Latvian lv

Malay ms

Dutch nl

Norwegian no

Polish pl

Portuguese pt

Romanian ro

Russian ru

Slovakian sk

Slovenian sl

Swedish sv

Turkish tr

Ukrainian uk

Cantonese yue

Container images are labelled using the following scheme, where language codes adhere the ISO-639 standard:

rt-asr-transcriber-<language>:<version>

For example,

rt-asr-transcriber-en:2.1.0

Real-time Container Quick Start Guide
This guide will walk you through the steps needed to deploy the Speechmatics Real-time Container ready for

transcription.

Check system requirements

Pull the Docker Image

Run the Container

After these steps, the Docker Image can be used to create containers that will transcribe audio files. More

information about using the API for real-time transcription is detailed in the Speech API guide.

System Requirements

Speechmatics containerized deployments are built on the Docker platform. At present a separate Docker image is

required for each language to be transcribed. Each docker image takes about {{ book.requirements.image_size }}

of storage.

A single image can be used to create and run multiple containers concurrently, each running container will require

the following resources:

{{ book.requirements.cpus }} vCPU

7

{{ book.requirements.memory }} RAM

{{ book.requirements.storage }} hard disk space

If you are using the enhanced model, it is recommended to use the upper limit of the RAM recommendations

Host recommended specs

The host machine requires a processor with following microarchitecture specification to run at expected

performance:

If using the standard model offering at least the Broadwell Class is required

If using the enhanced model offering at least the CascadeLake class is required

It is also recommended if using the enhanced model that the hardware supports the AVX512_VNNI flag, as

this will greatly improve transcription processing speed

Examples of this among popular hosting providers include the Microsoft Azure DSV-4 class, and

the Amazon M5n EC2 server class

Disabling hyperthreading when running the enhanced model can also improve transcription

speed. How to do so when running on Amazon Web Services is shown here, and for Microsoft

Azure please see here

AVX flags

Advanced Vector Extensions (AVX) are necessary to allow Speechmatics to carry out transcription.

For the enhanced model, it is recommended to use the AVX512_VNNI flag, which will substantially

improve transcription processing speed.

For the standard model, it is necessary to use at least a processor that supports Advanced Vector

Extensions 2 (AVX2).

You should also ensure your hypervisor is enabled to use AVX2.

Architecture

Each container:

Provides the ability to transcribe speech data in a predefined language from a live stream or a recorded

audio file. The container will receive audio input using a WebSocket protocol, and will provide the

following output:

Words in the transcript

Word confidence

Timing information

Relevant metadata information

Multiple instances of the container can be run on the same Docker host. This enables scaling of a single

language or multiple-languages as required

All data is transitory, once a container completes its transcription it removes all record of the operation,

no data is persisted.

Supported File Formats

Only the following file formats are supported:

aac

amr

flac

m4a

mp3

mp4

https://aws.amazon.com/blogs/compute/disabling-intel-hyper-threading-technology-on-amazon-linux/
https://docs.microsoft.com/en-us/azure/virtual-machines/mitigate-se#linux

8

mpg

ogg

wav

Accessing the Image

The Speechmatics Docker images are obtainable from the Speechmatics Docker repository (jfrog.io). If you do not

have a Speechmatics software repository account or have lost your details, please contact Speechmatics support

support@speechmatics.com.

The latest information about the containers can be found in the solutions section of the support portal. If a

support account is not available or the Containers section is not visible in the support portal, please contact

Speechmatics support support@speechmatics.com for help.

Prior to pulling any Docker images, the following must be known:

Speechmatics Docker credentials – provided by the Speechmatics team

Speechmatics Docker URL - https://speechmatics-docker-public.jfrog.io

Image name (which usually includes the language code of the target language, e.g. en for English or de

for German)

Image tag - which identifies the image version

Getting the Image

After gaining access to the relevant details for the Speechmatics software repository, follow the steps below to

login and pull the Docker images that are required, using a method such as the CLI

Software Repository Login

Ensure the Speechmatics Docker URL and software repository username and password are available. The endpoint

being used will require Docker to be installed. For example:

docker login https://speechmatics-docker-public.jfrog.io

You will be prompted for username and password. If successful, you will see the response:

Login Succeeded

If unsuccessful, please verify your credentials and URL. If problems persist, please contact Speechmatics

Support.

Pulling the Image

To pull the Docker image to the local environment follow the instructions below. Each supported language pack

comes as a different Docker image, so the process will need to be repeated for each required language.

Example pulling Global English (en) with the {{ book.product.version }} TAG:

docker pull speechmatics-docker-public.jfrog.io/rt-asr-transcriber-en:2.1.0

Example pulling Spanish (es) with the {{ book.product.version }} TAG:

docker pull speechmatics-docker-public.jfrog.io/rt-asr-transcriber-es:2.1.0

The image will start to download. This could take a while depending on your connection speed.

:::important Docker Image Caching Speechmatics require all customers to cache a copy of the Docker image(s)

within their own environment. :::

mailto:support@speechmatics.com
https://support.speechmatics.com/
mailto:support@speechmatics.com
https://speechmatics-docker-public.jfrog.io/

9

Please do not pull directly from the Speechmatics software repository for each deployment.

As of Feb 2021, all Speechmatics containers are built using Docker Buildkit. This should not impact your internal

management of the Speechmatics Container. If you use JFrog to host the Speechmatics container there may be

some UI issues see here, but these are cosmetic and should not impact your ability to pull and run the container. If

your internal registry uses Nexus and self-signed certificates, please make sure you are on Nexus version 3.15 or

above or you may encounter errors.

Licensing

You should have received a confidential license file from Speechmatics containing a token to use to license your

container. The contents of the file received should look similar to this:

{

 "contractid": 1,

 "creationdate": "2020-03-24 17:43:35",

 "customer": "Speechmatics",

 "id": "c18a4eb990b143agadeb384cbj7b04c3",

 "is_trial": true,

 "metadata": {

 "key_pair_id": 1,

 "request": {

 "customer": "Speechmatics",

 "features": [

 "MAPRT",

 "LANY"

],

 "isTrial": true,

 "notValidAfter": "2021-01-01",

 "validFrom": "2020-01-01"

 }

 },

 "signedclaimstoken": "example",

}

The validFrom and notValidAfter keys in the license file specify the start and end dates for the validity of

your license. The license is valid from 00�00 UTC on the start date to 00�00 UTC on the expiry date. After the

expiry date, the container will continue to run but will not transcribe audio. You should apply for a new license

before this happens.

Licensing does not require an internet connection.

There are two ways to apply the license to the container.

As a volume-mapped file

The license file should be mapped to the path /license.json within the container. For example:

docker run --volume $PWD/my_license.json:/license.json:ro rt-asr-transcriber-en:2.1.0

As an environment variable

Setting an environment variable named LICENSE_TOKEN is also a valid way to license the container. The contents

of this variable should be set to the value of the signedclaimstoken from within the license file.

For example, copy the signedclaimstoken from the license file (without the quotation marks) and set the

environment variable as below:

https://docs.docker.com/develop/develop-images/build_enhancements/
https://www.jfrog.com/jira/browse/RTFACT-20649
https://docs.docker.com/develop/develop-images/build_enhancements/

10

docker run -e LICENSE_TOKEN='example' rt-asr-transcriber-en:2.1.0

If both a volume-mapped file and an environment variable are provided simultaneously then the volume-mapped

file will be ignored.

Using the Container

Once the Docker image has been pulled into a local environment, it can be started using the Docker run

command either via a wrapper, or via the CLI. More details about operating and managing the container are

available in the Docker API documentation.

Here's an example of how to start the container from the command-line:

docker run -p 9000:9000 -p 8001:8001 -e LICENSE_TOKEN='example' rt-asr-transcriber-en:2.1.0

The Docker run options used are:

Name Description

--port, -p Expose ports on the container so that they are accessible from the host

--env, -e Set the value of an environment variable

See Docker docs for a full list of the available options.

Input Modes

The supported method for passing audio to a container is to use a Websocket. A session is setup with

configuration parameters passed in using a StartRecognition message, and thereafter audio is sent to the

container in binary chunks, with transcripts being returned in an AddTranscript message.

In the AddTranscript message individual result segments are returned, corresponding to audio segments

defined by pauses (and other latency measurements).

Output

The results list in the V2 Output format are sorted by increasing start_time , with a supplementary rule to sort

by decreasing end_time . Confidence precision is to 6 decimal places. See below for an example:

{

 "message": "AddTranscript",

 "format": "2.7",

 "metadata": {

 "transcript": "full tell radar",

 "start_time": 0.11,

 "end_time": 1.07

 },

 "results": [

 {

 "type": "word",

 "start_time": 0.11,

 "end_time": 0.40,

 "alternatives": [

 { "content": "full", "confidence": 0.7 }

]

 },

https://docs.docker.com/engine/api/latest
https://docs.docker.com/engine/reference/commandline/run/

11

 {

 "type": "word",

 "start_time": 0.41,

 "end_time": 0.62,

 "alternatives": [

 { "content": "tell", "confidence": 0.6 }

]

 },

 {

 "type": "word",

 "start_time": 0.65,

 "end_time": 1.07,

 "alternatives": [

 { "content":"radar", "confidence": 1.0 }

]

 }

]

}

Transcription duration information

The container will output a log message after every transcription session to indicate the duration of speech

transcribed during that session. This duration only includes speech, and not any silence or background noise

which was present in the audio. It may be useful to parse these log messages if you are asked to report usage

back to us, or simply for your own records.

The format of the log messages produced should match the following example:

2020-04-13 22:48:05.312 INFO sentryserver Transcribed 52 seconds of speech

Consider using the following regular expression to extract just the seconds part from the line if you are parsing it:

^.+ .+ INFO sentryserver Transcribed (\d+) seconds of speech$

Running a Container in Read-Only Mode

Users may wish to run the container in read-only mode. This may be necessary due to their regulatory

environment, or a requirement not to write any media file to disk. An example of how to do this is below.

docker run -it --read-only \

-p 9000:9000 \

--tmpfs /tmp \

-e LICENSE_TOKEN=$TOKEN_VALUE \

rt-asr-transcriber-en:2.1.0

The container still requires a temporary directory with write permissions. Users can provide a directory (e.g

/tmp) by using the --tmpfs Docker argument. A tmpfs mount is temporary, and only persisted in the host

memory. When the container stops, the tmpfs mount is removed, and files written there wonʼt be persisted.

If customers want to use the shared custom dictionary cache feature, they must also specify the location of cache

and mount it as a volume

docker run -it --read-only \

-p 9000:9000 \

--tmpfs /tmp \

-v /cachelocation:/cache \

12

-e LICENSE_TOKEN=$TOKEN_VALUE \

-e SM_CUSTOM_DICTIONARY_CACHE_TYPE=shared \

rt-asr-transcriber-en:2.1.0

Running a Container as a non-root user

A Real-time container can be run as a non-root user with no impact to feature functionality. This may be required if

a hosting environment or a company's internal regulations specify that a container must be run as a named user.

Users may specify the non-root command by the docker run –-user $USERNUMBER:$GROUPID . User number

and group ID are non-zero numerical values from a value of 1 up to a value of 65535

An example is below:

docker run -it --user 100:100 \

-p 9000:9000 \

-e LICENSE_TOKEN=$TOKEN_VALUE \

rt-asr-transcriber-en:2.1.0

How to use a Shared Custom Dictionary Cache

For more information on how the Custom Dictionary works, please see the Speech API Guide.

The Speechmatics Real-time Container includes a cache mechanism for custom dictionaries to improve set-up

performance for repeated use. By using this cache mechanism, transcription will start more quickly when

repeatedly using the same custom dictionaries. You will see performance benefits on re-using the same custom

dictionary from the second time onwards.

It is not a requirement to use the shared cache to use the Custom Dictionary.

The cache volume is safe to use from multiple containers concurrently if the operating system and its filesystem

support file locking operations. The cache can store multiple custom dictionaries in any language used for

transcription. It can support multiple custom dictionaries in the same language.

If a custom dictionary is small enough to be stored within the cache volume, this will take place automatically if the

shared cache is specified.

For more information about how the shared cache storage management works, please see Maintaining the

Shared Cache.

We highly recommend you ensure any location you use for the shared cache has enough space for the number of

custom dictionaries you plan to allocate there. How to allocate custom dictionaries to the shared cache is

documented below.

How to set up the Shared Cache

The shared cache is enabled by setting the following value when running transcription:

Cache Location: You must volume map the directory location you plan to use as the shared cache to

/cache when submitting a job

SM_CUSTOM_DICTIONARY_CACHE_TYPE : (mandatory if using the shared cache) This environment variable

must be set to shared

SM_CUSTOM_DICTIONARY_CACHE_ENTRY_MAX_SIZE : (optional if using the shared cache). This determines

the maximum size of any single custom dictionary that can be stored within the shared cache in bytes

E.G. a SM_CUSTOM_DICTIONARY_CACHE_ENTRY_MAX_SIZE with a value of 10000000 would set a

max storage size of any custom dictionary at 10MB

For reference a custom dictionary wordlist with 1000 words produces a cache entry of size

around 200 kB, or 200000 bytes

13

A value of -1 will allow every custom dictionary to be stored within the shared cache. This is the

default assumed value

A custom dictionary cache entry larger than the

SM_CUSTOM_DICTIONARY_CACHE_ENTRY_MAX_SIZE will still be used in transcription, but will not

be cached

Maintaining the Shared Cache

If you specify the shared cache to be used and your custom dictionary is within the permitted size, Speechmatics

Real-time Container will always try to cache the custom dictionary. If a custom dictionary cannot occupy the

shared cache due to other cached custom dictionaries within the allocated cache, then older custom dictionaries

will be removed from the cache to free up as much space as necessary for the new custom dictionary. This is

carried out in order of the least recent custom dictionary to be used.

Therefore, you must ensure your cache allocation large enough to handle the number of custom dictionaries you

plan to store. We recommend a relatively large cache to avoid this situation if you are processing multiple custom

dictionaries using the batch container (e.g 50 MB). If you don't allocate sufficient storage this could mean one or

multiple custom dictionaries are deleted when you are trying to store a new custom dictionary.

It is recommended to use a docker volume with a dedicated filesystem with a limited size. If a user decides to use

a volume that shares filesystem with the host, it is the user's responsibility to purge the cache if necessary.

Creating the Shared Cache

In the example below, transcription is run where an example local docker volume is created for the shared cache. It

will allow a custom dictionary of up to 5MB to be cached.

docker volume create speechmatics-cache

docker run --rm -d \

 -p 9000:9000 \

 -e LICENSE_TOKEN='example' \

 -e SM_CUSTOM_DICTIONARY_CACHE_TYPE=shared \

 -e SM_CUSTOM_DICTIONARY_CACHE_ENTRY_MAX_SIZE=5000000 \

 -v speechmatics-cache:/cache \

 rt-asr-transcriber-en:2.1.0

speechmatics transcribe --additional-vocab gnocchi --url ws://localhost:9000/v2 --ssl-

mode=none test.mp3

Viewing the Shared Cache

If all set correctly and the cache was used for the first time, a single entry in the cache should be present.

The following example shows how to check what Custom Dictionaries are stored within the cache. This will show

the language, the sampling rate, and the checksum value of the cached dictionary entries.

ls $(docker inspect -f "{{.Mountpoint}}" speechmatics-cache)/custom_dictionary

en,16kHz,bef53e5bcca838a39c3707f1134bda6a09ff87aaa09203617528774734455edd

Reducing the Shared Cache Size

Cache size can be reduced by removing some or all cache entries.

rm -rf $(docker inspect -f "{{.Mountpoint}}" speechmatics-cache)/custom_dictionary/*

:::note Manually purging the cache Before manually purging the cache, ensure that no containers have the volume

mounted, otherwise an error during transcription might occur. Consider creating a new docker volume as a

14

temporary cache while performing purging maintenance on the cache. :::

Health service
The container is able to expose an HTTP health service, which offers startup, liveness and readiness probes. This

is accessible from Port 8001, and has 3 endpoints, started , live and ready . These can be used to see

whether all services in the container are running or active respectively. This may be especially helpful if you are

deploying the container into a Kubernetes cluster. If you are using Kubernetes, we recommend that you also refer

to the Kubernetes documentation around liveness and readiness probes

(https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/).

The health service is enabled by default and should run as a subprocess of the main entrypoint to the container.

Endpoints

The health service offers three endpoints:

/started

This endpoint provides a startup probe. It can be queried using an HTTP GET request. You must include the

relevant port, 8001, in the request.

This probe indicates whether all services in the container have successfully started. Once it returns a successful

response code, it should never return an unsuccessful response code later.

Possible responses:

200 if all of the services in the container have successfully started.

503 otherwise.

A JSON object is also returned in the body of the response, indicating the status.

Example:

$ curl -i address.of.container:8001/started

HTTP/1.0 200 OK

Server: BaseHTTP/0.6 Python/3.8.5

Date: Mon, 08 Feb 2021 12:46:21 GMT

Content-Type: application/json

{

 "started": true

}

/live

This endpoint provides a liveness probe. It can be queried using an HTTP GET request. You must include the

relevant port, 8001, in the request.

This probe indicates whether all services in the container are active. The services in the container send regular

updates to the health service, if they don't send an update for more than 10 seconds then they will be marked as

'dead' and this endpoint will return an unsuccessful response code. For example, if the WebSocket server in the

container was to crash, this endpoint should indicate that.

Possible responses:

200 if all of the services in the container have successfully started, and have recently sent an update to

the health service.

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

15

503 otherwise.

A JSON object is also returned in the body of the response, indicating the status.

Example:

$ curl -i address.of.container:8001/live

HTTP/1.0 200 OK

Server: BaseHTTP/0.6 Python/3.8.5

Date: Mon, 08 Feb 2021 12:46:45 GMT

Content-Type: application/json

{

 "alive": true

}

/ready

This endpoint provides a readiness probe. It can be queried using an HTTP GET request.

This probe indicates whether the container is currently transcribing something; if the server is handling at least

one audio stream then it is considered not ready.

We recommend limiting our container to one audio stream at a time, and using this probe as a scaling mechanism.

Note: The readiness check is accurate within a 2 second resolution. If you do use this probe for load balancing, be

aware that bursts of traffic within that 2 second window could all be allocated to a single container since it's

readiness state will not change.

Possible responses:

200 if the container is not currently transcribing audio.

503 otherwise.

A JSON object is also returned in the body of the response, indicating the status.

Example:

$ curl -i address.of.container:8001/ready

HTTP/1.0 200 OK

Server: BaseHTTP/0.6 Python/3.8.5

Date: Mon, 08 Feb 2021 12:47:05 GMT

Content-Type: application/json

{

 "ready": true

}

Troubleshooting

Enabling Logging

If you are seeing problems then we recommend that you open a ticket with Speechmatics support:

support@speechmatics.com. Please include the logging output from the container if you do open a ticket, and

ideally enable verbose logging.

Verbose logging is enabled by running the container with the environment variable DEBUG set to true .

e.g.

mailto:support@speechmatics.com

16

docker run -e DEBUG=true rt-asr-transcriber-en:2.1.0

Licensing

The best way to identify licensing errors with the container is to look at the container logs. See

https://docs.docker.com/config/containers/logging/ for more information about doing this. If licensing is successful

then the logs upon startup should look similar to this:

INFO:__main__:Starting health service

INFO:orchestrator.health:Health check server starting...

INFO:__main__:Health service started.

INFO:orchestrator.license:Starting sentry server...

time="2020-03-27T11:50:18.9774596Z" level=info msg="Listening to port 52000, secure mode =

false"

time="2020-03-27T11:50:18.9776369Z" level=info msg="Reading license from /license.json"

time="2020-03-27T11:50:18.9866595Z" level=info msg="Read token eyJkbGciOjJS..."

INFO:orchestrator.license:Sentry server started

time="2020-03-27T11:50:18.990334Z" level=info msg="License : licensed=true,

customer=Speechmatics, contract_id=0, expires_at=2021-03-16 00:00:00 +0000 UTC,

trial=false, features=MAPRT,MAPBA,AMCC,APD,APR,ASS"

time="2020-03-27T11:50:18.9904803Z" level=info msg="Starting server 3.0.0 [master]"

time="2020-03-27T11:50:18.9918058Z" level=info msg="Monitoring parent pid 1"

2020-03-27 11:50:19,005 orchestrator.transport.ws.common INFO Waiting for the

model to be ready - checking /model/manifest.json

2020-03-27 11:50:20,673 orchestrator.transport.ws.common INFO Loading model en

2020-03-27 11:50:26,107 orchestrator.transport.ws.ws INFO transport websocket

listening at ws://0.0.0.0:9000

2020-03-27 11:50:26,107 orchestrator.transport.ws.health_update INFO Transport marked as

started for health updates.

If your container is not licensed, or has an invalid license then it will exit upon startup with an error message

similar to this:

RuntimeError: Failed to launch sentry server licensing process on port 52000

Please ensure that you have correctly followed the instructions in the quick start guide for setting up licensing,

and that have you a license file which has not expired (the metadata section in the file tells you when the license

is valid until).

There can be several reasons for a licensing error:

No license has been provided

If you see the following message in the container logs then the most likely cause is that no license file has been

provided:

level=error msg="could not load license file data: stat /license.json: no such file or

directory"

Please review the quick start guide and ensure that the license has been provided properly, either as a volume-

mapped file or as an environment variable.

The license has expired

level=info msg="License : licensed=false, customer=Speechmatics, contract_id=99,

expires_at=2020-03-26 00:00:00 +0000 UTC, trial=false, features="

https://docs.docker.com/config/containers/logging/

17

level=error msg="Error in license : token is expired by 36h6m37s"

This message indicates that your license has expired. Please request a new license from Speechmatics support.

You are attempting to use a feature for which you are not licensed

Not all licenses are valid for all features of our product. If you are not licensed for a feature which you attempt to

use for transcription, then transcription will not be performed. Please get in touch with Speechmatics support if

you are interested in using a feature which you are not licensed for.

If this error case happens you should see a log message similar to this one:

2020-03-27 12:11:04,230 orchestrator.transport.ws.protocol WARNING Sending an error to

client: not_allowed - Unable to use provided configuration: No license for requested

language - LEN; session ID de1ec62d-a22d-47a3-8f03-def025a52f60

An improperly formatted license file has been provided

Only relevant if using a volume-mapped file to license the container

level=error msg="could not load license file data: unexpected end of JSON input"

or

level=error msg="could not load license file data: No valid signedclaimstoken field found

in license (too short)"

Please ensure that you are using the license file which has been provided to you by the Speechmatics support

team, and that no changes have been made to the file accidentally.

The license file should be a valid JSON file and should contain a key named signedclaimstoken which is your

license token.

Common Problems

You should ensure, when using the config object in the StartRecognition message, that the JSON is correctly

formatted.

Real-time Container API Guide
This page specifies the Real-time API at its current state. The basic elements in the communication are the

following:

Client - An application connecting to the API, providing the audio and processing the transcripts received

from the Server.

Server (also called API) - An entry point of the API, allows external connections and provides the

transcripts back.

Worker - An internal speech recognizer. This is an internal entity that actually runs the heavy speech

recognition.

This is a specification for Speechmatics Real-time API version 2.7

Client ↔ API endpoint

The communication is done using WebSockets, which are implemented in most of the modern web-browsers, as

well as in many common programming languages (namely C++ and Python, for instance using

http://autobahn.ws/).

http://autobahn.ws/

18

Messages

Each message that the Server accepts is a stringified JSON object with the following fields:

message (String): The name of the message we are sending. Any other fields depend on the value of the

message and are described below.

The messages sent by the Server to a Client are stringified JSON objects as well.

The only exception is a binary message sent from the Client to the Server containing a chunk of audio which will

be referred to as AddAudio .

The following values of the message field are supported:

StartRecognition

Initiates recognition, based on details provided in the following fields:

message: "StartRecognition"

audio_format (Object:AudioType): Required. Audio stream type you are going to send: see Supported

audio types.

transcription_config (Object:TranscriptionConfig): Required. Set up configuration values for this

recognition session, see Transcription config.

A StartRecognition message must be sent exactly once after the WebSocket connection is opened. The client

must wait for a RecognitionStarted message before sending any audio.

In case of success, a message with the following format is sent as a response:

message: "RecognitionStarted"

id (String): Required. A randomly-generated GUID which acts as an identifier for the session. e.g.

"807670e9-14af-4fa2-9e8f-5d525c22156e".

In case of failure, an error message is sent, with type being one of the following: invalid_model ,

invalid_audio_type , not_authorised , insufficient_funds , not_allowed , job_error .

An example of the StartRecognition message:

{

 "message": "StartRecognition",

 "audio_format": {

 "type": "raw",

 "encoding": "pcm_f32le",

 "sample_rate": 16000

 },

 "transcription_config": {

 "language": "en",

 "output_locale": "en-US",

 "diarization": "speaker_change",

 "max_delay": 3.5,

 "max_delay_mode": "flexible",

 "enable_partials": true,

 }

}

Explaining Max Delay Mode

19

Users can specify the latency of the Real-time Speechmatics engine using the max_delay parameter. If a value

of '5' was chosen, this would mean that transcripts would always be returned in 5 seconds from the word first

being spoken. This happens even if a word is detected that may overrun that threshold. In some cases this can

lead to inaccuracies in recognition and in finalised transcripts. This can be especially noticeable with key entities

such as numerals, currencies, and dates.

max_delay_mode allows a greater flexibility in this latency only when a potential entity has been detected.

Entities are common concepts such as numbers, currencies and dates, and can be seen in more detail here.

There are two potential options for max_delay_mode : fixed and flexible . If no option is chosen, the default

is flexible . Where an entity is detected with flexible , the latency of a transcript may exceed the threshold

specified in max_delay , however the recognition of entities will be more accurate. If a user specifies fixed , the

transcript will be returned in segments that will never exceed the max_delay threshold, even if this causes

inaccuracies in entity recognition.

SetRecognitionConfig

Allows the Client to configure the recognition session even after the initial StartRecognition message without

restarting the connection. This is only supported for certain parameters.

message: "SetRecognitionConfig"

transcription_config (Object:TranscriptionConfig): A TranscriptionConfig object containing the new

configuration for the session, see Transcription config.

The following is an example of such a configuration message:

{

 "message": "SetRecognitionConfig",

 "transcription_config": {

 "language": "en",

 "max_delay": 3.5,

 "enable_partials": true

 }

}

Note: The language property is a mandatory element in the transcription_config object; however it is not

possible to change the language mid-way through the session (it will be ignored if you do). It is only possible to

modify the following settings through a SetRecognitionConfig message after the initial StartRecognition

message:

max_delay

max_delay_mode

enable_partials

If you wish to alter any other parameters you must terminate the session and restart with the altered configuration.

Attempting otherwise will result in an error.

The example above starts a session with the Global English model ready to consume raw PCM encoded audio with

float samples at 16kHz. It also includes an additional_vocab list containing the names of different types of

pasta. speaker_change diarization is enabled, and partials are enabled meaning that AddPartialTranscript

messages will be received as well as AddTranscript messages. Punctuation is configured to restrict the set of

punctuation marks that will be added to only commas and full stops.

AddAudio

http://localhost:63808/entities/

20

Adds more audio data to the recognition job started on the WebSocket using StartRecognition . The server will

only accept audio after it is initialized with a job, which is indicated by a RecognitionStarted message. Only

one audio stream in one format is currently supported per WebSocket (and hence one recognition job).

AddAudio is a binary message containing a chunk of audio data and no additional metadata.

AudioAdded

If the AddAudio message is successfully received, an AudioAdded message is sent as a response. This message

confirms that the Server has accepted the data and will make a corresponding Worker process it. If the Client

implementation holds the data in an internal buffer to resubmit in case of an error, it can safely discard the

corresponding data after this message. The following fields are present in the response:

message: "AudioAdded"

seq_no (Int): Required. An incrementing number which is equal to the number of audio chunks that the

server has processed so far in the session. The count begins at 1 meaning that the 5th AddAudio

message sent by the client, for example, should be answered by an AudioAdded message with seq_no

equal to 5.

Possible errors:

data_error , job_error , buffer_error

When sending audio faster than real time (for instance when sending files), make sure you don't send too much

audio ahead of time. For large files, this causes the audio to fill out networking buffers, which might lead to

disconnects due to WebSocket ping/pong timeout. Use AudioAdded messages to keep track what messages are

processed by the engine, and don't send more than 10s of audio data or 500 individual AddAudio messages ahead

of time (whichever is lower).

Implementation details

Under special circumstances, such as when the client is sending the audio data faster than real time, the Server

might read the data slower than the Client is sending it. The Server will not read the binary AddAudio message if

it is larger than the internal audio buffer on the Server. Note that for each Worker, there is a separate buffer. In

that case, the server will read any messages coming in on the WebSocket, until enough space is made in the

buffer by passing the data to a corresponding Worker. The Client will only receive the corresponding AudioAdded

response message once the binary data is read. The WebSocket might eventually fill all the TCP buffers on the

way, causing a corresponding WebSocket to fail to write and close the connection with prejudice. The Client can

use the bufferedAmount attribute of the WebSocket to prevent this.

AddTranscript

This message is sent from the Server to the Client, when the Worker has provided the Server with a segment of

transcription output. It contains the transcript of a part of the audio the Client has sent using AddAudio - the

final transcript. These messages are also referred to as finals. Each message corresponds to the audio since the

last AddTranscript message. The transcript is final - any further AddTranscript or AddPartialTranscript

messages will only correspond to the newly processed audio. An AddTranscript message is sent when we

reach an endpoint (end of a sentence or a phrase in the audio), or after 10s if we haven't reached such an event.

This timeout can be further configured by setting transcription_config.max_delay in the

StartRecognition message.

message: "AddTranscript"

metadata (Object): Required.

start_time (Number): Required. An approximate time of occurrence (in seconds) of the audio

corresponding to the beginning of the first word in the segment.

end_time (Number): Required. An approximate time of occurrence (in seconds) of the audio

corresponding to the ending of the final word in the segment.

https://www.w3.org/TR/websockets/#concept-websocket-close-fail
https://www.w3.org/TR/websockets/#dom-websocket-bufferedamount

21

transcript (String): Required. The entire transcript contained in the segment in text format.

Providing the entire transcript here is designed for ease of consumption; we have taken care of all

the necessary formatting required to concatenate the transcription results into a block of text.

This transcript lacks the detailed information however which is contained in the results field of

the message - such as the timings and confidences for each word.

results (List:Object):

type (String): Required. One of 'word', 'entity', 'punctuation' or 'speaker_change'. 'word' results

represent a single word. 'punctuation' results represent a single punctuation symbol. 'word' and

'punctuation' results will both have one or more alternatives representing the possible

alternatives we think the word or punctuation symbol could be. 'entity' is only a possible type if

enable_entities is set to true and indicates a formatted entity. 'speaker_change' results

however will have an empty alternatives field. 'speaker_change' results will only occur when

using speaker_change diarization.

start_time (Number): Required. The start time of the result relative to the start_time of the

whole segment as described in metadata .

end_time (Number): Required. The end time of the result relative to the start_time of the

segment in the message as described in metadata . Note that punctuation symbols and

speaker_change results are considered to be zero-duration and thus for those results

start_time is equal to end_time .

is_eos (Boolean): Optional. Only present for 'punctuation' results. This indicates whether or not

the punctuation mark is considered an end-of-sentence symbol. For example full-stops are an

end-of-sentence symbol in English, whereas commas are not. Other languages, such as

Japanese, may use different end-of-sentence symbols.

alternatives (List:Object): Optional. For 'word' and 'punctuation' results this contains a list of

possible alternative options for the word/symbol.

content (String): Required. A word or punctuation mark. When enable_entities is

requested this can be multiple words with spaces, for example "17th of January 2022".

confidence (Number): Required. A confidence score assigned to the alternative.

Ranges from 0.0 (least confident) to 1.0 (most confident).

display (Object): Optional. Information about how the word/symbol should be

displayed.

direction (String): Required. Either 'ltr' for words that should be displayed

left-to-right, or 'rtl' vice versa.

language (String): Optional. The language that the alternative word is assumed to be

spoken in. Currently this will always be equal to the language that was requested in the

initial StartRecognition message.

tags (array): Optional. Only [disfluency] and [profanity] are displayed. This is a

set list of profanities and disfluencies respecitvely that cannot be altered by the end

user. [disfluency] is only present in English, and [profanity] is present in English,

Spanish, and Italian.

entity_class (String): Optional. If enable_entities is requested in the

startTranscriptionConfig request, and an entity is detected, entity_class will represent the

type of entity the word(s) have been formatted as.

spoken_form (List:Object): Optional. If enable_entities is requested in the

startTranscriptionConfig request, and an entity is detected, this is a list of words without

formatting applied. This follows the results list API formatting.

written_form (List:Object): Optional. If enable_entities is requested in the

startTranscriptionConfig request, and an entity is detected, this is a list of formatted words that

matches the entity content but with individual estimated timing and confidences. This follows

the results list API formatting.

22

AddPartialTranscript

A partial-transcript message. The structure is the same as AddTranscript . A partial transcript is a transcript

that can be changed and expanded by a future AddTranscript or AddPartialTranscript message and

corresponds to the part of audio since the last AddTranscript message. For AddPartialTranscript

messages the confidence field for alternatives has no meaning and will always be equal to 0.

Partials will only be sent if transcription_config.enable_partials is set to true in the

StartRecognition message.

EndOfStream

This message is sent from the Client to the API to announce that it has finished sending all the audio that it

intended to send. No more AddAudio message are accepted after this message. The Server will finish processing

the audio it has received already and then send an EndOfTranscript message. This message is usually sent at the

end of file or when the microphone input is stopped.

message: "EndOfStream"

last_seq_no (Int): Required. The total number of audio chunks sent (in the AddAudio messages).

EndOfTranscript

Sent from the API to the Client when the API has finished all the audio, as marked with the EndOfStream

message. The API sends this only after it sends all the corresponding AddTranscript messages first. Upon

receiving this message the Client can safely disconnect immediately because there will be no more messages

coming from the API.

Supported audio types

An AudioType object always has one mandatory field type , and potentially more mandatory fields based on the

value of type . The following types are supported:

type: "raw"

Raw audio samples, described by the following additional mandatory fields:

encoding (String): Encoding used to store individual audio samples. Currently supported values:

pcm_f32le - Corresponds to 32 bit float PCM used in the WAV audio format, little-endian

architecture. 4 bytes per sample.

pcm_s16le - Corresponds to 16 bit signed integer PCM used in the WAV audio format, little-

endian architecture. 2 bytes per sample.

mulaw - Corresponds to 8 bit µ-law (mu-law) encoding. 1 byte per sample.

sample_rate (Int): Sample rate of the audio

Please ensure when sending raw audio samples in real-time that the samples are undivided. For example, if you

are sending raw audio via pcm_f32le , the sample should always contain 4 bytes. Here, if a sample did not

contain 4 bytes, and then an EndOfStream message were sent, this would then cause an error. Required byte sizes

per sample for each type of raw audio are listed above.

type: "file"

Any audio/video format supported by GStreamer. The AddAudio messages have to provide all the file contents,

including any headers. The file is usually not accepted all at once, but segmented into reasonably sized messages.

Example audio_format field value: audio_format: {type: "raw", encoding: "pcm_s16le",

sample_rate: 44100}

23

Transcription config

A TranscriptionConfig object specifies various configuration values for the recognition engine. All the values

are optional, using default values when not provided.

language (String): Required. Language model to process the audio input, normally specified as an ISO

language code e.g. 'en'.

domain (String): Optional. Request a specialized language pack optimized for a particular domain, e.g.

'finance'. Domain is only supported for selected languages.

additional_vocab (List:AdditionalWord): Optional. Configure additional words. See Additional words.

Default is an empty list. You should be aware that there is a performance penalty (latency degradation and

memory increase) from using additional_vocab , especially if you intend to load in a large word list.

When initialising a session that uses additional_vocab in the config you should expect a delay of up to

15 seconds, and an additional 800MB to 1700MB of memory (depending on the size of the list).

diarization (String): Optional. The speaker diarization method to apply to the audio. The default is

"none" indicating that no diarization will be performed. An alternative option is "speaker_change"

diarization in which the ASR system will attempt to detect any changes in speaker. Speaker changes are

indicated in the results using an object with a type set to speaker_change . Speaker change is a beta

feature.

enable_partials (Boolean): Optional. Whether or not to send partials (i.e. AddPartialTranscript

messages) as well as finals (i.e. AddTranscript messages). The default is false .

max_delay (Number): Optional. Maximum delay in seconds between receiving input audio and returning

partial transcription results. The default is 10. The minimum and maximum values are 2 and 20.

output_locale (String): Optional. Configure output locale. See Output locale. Default is an empty

string.

punctuation_overrides (Object:PunctuationOverrides): Optional. Options for controlling punctuation

in the output transcripts. See Punctuation overrides.

speaker_change_sensitivity (Number): Optional.: Controls how responsive the system is for

potential speaker changes. The value ranges between zero and one. High value indicates high sensitivity,

i.e. prefer to indicate a speaker change if in doubt. The default is 0.4. This setting is only applicable when

using "diarization": "speaker_change" .

operating_point (String): Optional. Which model within the language pack you wish to use for

transcription with a choice between standard and enhanced . See API How-to Guide for more details

enable_entities (Boolean): Optional. Whether a user wishes for entities to be identified with additional

spoken and written word format. Supported values true or false . The default is false .

Requesting an enhanced model

Speechmatics supports two different models within each language pack; a standard or an enhanced model. The

standard model is the faster of the two, whilst the enhanced model provides a higher accuracy, but a slower

turnaround time.

The enhanced model is a premium model. Please contact your account manager or Speechmatics if you would like

access to this feature.

An example of requesting the enhanced model is below

{

 "message": "StartRecognition",

 "audio_format": {

 "type": "raw",

 "encoding": "pcm_f32le",

 "sample_rate": 16000

 },

24

{

 "transcription_config": {

 "language": "en",

 "operating_point": "enhanced"

 }

}

Please note: standard , as well as being the default option, can also be explicitly requested with the

operating_point parameter.

Additional words

Additional words expand the standard recognition dictionary with a list of words or phrases called additional

words. An additional word can also be a phrase, as long as individual words in the phrase are separated by

spaces. This is the custom dictionary supported in other Speechmatics products. A pronunciation of those words

is generated automatically or based on a provided sounds_like field. This is intended for adding new words and

phrases, such as domain-specific terms or proper names. Better results for domain-specific words that contain

common words can be achieved by using phrases rather than individual words (such as action plan).

AdditionalWord is either a String (the additional word) or an Object . The object form was introduced in

0.7.0. The object form has the following fields:

content (String): The additional word.

sounds_like (List:String): A list of words with similar pronunciation. Each word in this list is used as one

alternative pronunciation for the additional word. These don't have to be real words - only their

pronunciation matters. This list must not be empty. Words in the list must not contain whitespace

characters. When sounds_like is used, the pronunciation automatically obtained from the content

field is not used.

The String form "word" corresponds with the following Object form: {"content": "word",

"sounds_like": ["word"]} .

Full example of additional_vocab :

 "additional_vocab": [

 "speechmatics",

 {"content": "gnocchi", "sounds_like": ["nyohki", "nokey", "nochi"]},

 {"content": "CEO", "sounds_like": ["seeoh"]},

 "financial crisis"

]

To clarify, the following ways of adding the word speechmatics are equivalent with all using the default

pronunciation:

�. "additional_vocab": ["speechmatics"]

�. "additional_vocab": [{"content": "speechmatics"}]

�. "additional_vocab": [{"content": "speechmatics", "sounds_like": ["speechmatics"]}]

Output locale

Change the spellings of the transcription according to the output locale language code. If the selected language

pack supports a different output locale, this config value can be used to provide spelling for the transcription in

one of these locales. For example, the English language pack currently supports locales: en-GB , en-US and

en-AU . The default value for output_locale is an empty string that means the transcription will use its default

configuration (without spellings being altered in the transcription).

25

The following locales are supported for Chinese Mandarin. The default is simplified Mandarin.

Simplified Mandarin (cmn-Hans)

Traditional Mandarin (cmn-Hant)

Punctuation overrides

This object contains settings for configuring punctuation in the transcription output.

permitted_marks (List:String) Optional. The punctuation marks which the client is prepared to accept

in transcription output, or the special value 'all' (the default). Unsupported marks are ignored. This value

is used to guide the transcription process.

sensitivity (Number) Optional. Ranges between zero and one. Higher values will produce more

punctuation. The default is 0.5.

Error messages

Error messages have the following fields:

message: "Error"

code (Int): Optional. A numerical code for the error. See below. TODO: This is not yet finalised.

type (String): Required. A code for the error message. See the list of possible errors below.

reason (String): Required. A human-readable reason for the error message.

Error types

type: "invalid_message"

The message received was not understood.

type: "invalid_model"

Unable to use the model for the recognition. This can happen if the language is not supported at

all, or is not available for the user.

type: "invalid_config"

The config received contains some wrong/unsupported fields.

type: "invalid_audio_type"

Audio type is not supported, is deprecated, or the audio_type is malformed.

type: "invalid_output_format"

Output format is not supported, is deprecated, or the output_format is malformed.

type: "not_authorised"

User was not recognised, or the API key provided is not valid.

type: "insufficient_funds"

User doesn't have enough credits or any other reason preventing the user to be charged for the

job properly.

type: "not_allowed"

User is not allowed to use this message (is not allowed to perform the action the message would

invoke).

type: "job_error"

Unable to do any work on this job, the Worker might have timed out etc.

type: "data_error"

Unable to accept the data specified - usually because there is too much data being sent at once

type: "buffer_error"

Unable to fit the data in a corresponding buffer. This can happen for clients sending the input

data faster then real-time.

26

type: "protocol_error"

Message received was syntactically correct, but could not be accepted due to protocol

limitations. This is usually caused by messages sent in the wrong order.

type: "unknown_error"

An error that did not fit any of the types above.

Note that invalid_message , protocol_error and unknown_error can be triggered as a response to any

type of messages.

The transcription is terminated and the connection is closed after any error.

Warning messages

Warning messages have the following fields:

message: "Warning"

code (Int): Optional. A numerical code for the warning. See below. TODO: This is not yet finalised.

type (String): Required. A code for the warning message. See the list of possible warnings below.

reason (String): Required. A human-readable reason for the warning message.

Warning types

type: "duration_limit_exceeded"

The maximum allowed duration of a single utterance to process has been exceeded. Any

AddAudio messages received that exceed this limit are confirmed with AudioAdded, but are

ignored by the transcription engine. Exceeding the limit triggers the same mechanism as

receiving an EndOfStream message, so the Server will eventually send an EndOfTranscript

message and suspend.

It has the following extra field:

duration_limit (Number): The limit that was exceeded (in seconds).

Info messages

Info messages denote additional information sent form the Server to the Client. Those are similar to Error and

Warning messages in syntax, but don't actually denote any problem. The Client can safely ignore these

messages or use them for additional client-side logging.

message: "Info"

code (Int): Optional. A numerical code for the informational message. See below. TODO: This is not yet

finalised.

type (String): Required. A code for the info message. See the list of possible info messages below.

reason (String): Required. A human-readable reason for the informational message.

Info message types

type: "recognition_quality"

Informs the client what particular quality-based model is used to handle the recognition.

It has the following extra field:

quality (String): Quality-based model name. It is one of "telephony" ,

"broadcast" . The model is selected automatically, for high-quality audio (12kHz+) the

broadcast model is used, for lower quality audio the telephony model is used.

** type: "model_redirect"

27

Informs the client that a deprecated language code has been specified, and will be handled with a

different model. For example, if the model parameter is set to one of en-US, en-GB, or en-AU,

then the request may be internally redirected to the Global English model (en).

** type: "deprecated"

Informs about using a feature that is going to be removed in a future release.

Example communication

The communication consists of 3 stages - initialization, transcription and a disconnect handshake.

On initialization, the StartRecognition message is sent from the Client to the API and the Client must block

and wait until it receives a RecognitionStarted message.

Afterwards, the transcription stage happens. The client keeps sending AddAudio messages. The API

asynchronously replies with AudioAdded messages. The API also asynchronously sends

AddPartialTranscript and AddTranscript messages.

Once the client doesn't want to send any more audio, the disconnect handshake is performed. The Client sends

an EndOfStream message as it's last message. No more messages are handled by the API afterwards. The API

processes whatever audio it has buffered at that point and sends all the AddTranscript and

AddPartialTranscript messages accordingly. Once the API processes all the buffered audio, it sends an

EndOfTranscript message and the Client can then safely disconnect.

Note: In the example below, -> denotes a message sent by the Client to the API, <- denotes a message send by

the API to the Client. Any comments are denoted "[like this]" .

-> {"message": "StartRecognition", "audio_format": {"type": "file"},

 "transcription_config": {"language": "en", "enable_partials": true}}

 <- {"message": "RecognitionStarted", "id": "807670e9-14af-4fa2-9e8f-5d525c22156e"}

-> "[binary message - AddAudio 1]"

-> "[binary message - AddAudio 2]"

 <- {"message": "AudioAdded", "seq_no": 1}

 <- {"message": "Info", "type": "recognition_quality", "quality": "broadcast", "reason":

"Running recognition using a broadcast model quality."}

 <- {"message": "AudioAdded", "seq_no": 2}

-> "[binary message - AddAudio 3]"

 <- {"message": "AudioAdded", "seq_no": 3}

"[asynchronously received transcripts:]"

 <- {"message": "AddPartialTranscript", "metadata": {"start_time": 0.0, "end_time":

0.5399999618530273, "transcript": "One"},

 "results": [{"alternatives": [{"confidence": 0.0, "content": "One"}],

 "start_time": 0.47999998927116394, "end_time": 0.5399999618530273,

"type": "word"}

]}

 <- {"message": "AddPartialTranscript", "metadata": {"start_time": 0.0, "end_time":

0.7498992613545260, "transcript": "One to"},

28

 "results": [{"alternatives": [{"confidence": 0.0, "content": "One"}],

 "start_time": 0.47999998927116394, "end_time": 0.5399999618530273,

"type": "word"},

 {"alternatives": [{"confidence": 0.0, "content": "to"}],

 "start_time": 0.6091238623430891, "end_time": 0.7498992613545260, "type":

"word"}

]}

 <- {"message": "AddPartialTranscript", "metadata": {"start_time": 0.0, "end_time":

0.9488123643240011, "transcript": "One to three"},

 "results": [{"alternatives": [{"confidence": 0.0, "content": "One"}],

 "start_time": 0.47999998927116394, "end_time": 0.5399999618530273,

"type": "word"},

 {"alternatives": [{"confidence": 0.0, "content": "to"}],

 "start_time": 0.6091238623430891, "end_time": 0.7498992613545260, "type":

"word"}

 {"alternatives": [{"confidence": 0.0, "content": "three"}],

 "start_time": 0.8022338627780892, "end_time": 0.9488123643240011, "type":

"word"}

]}

 <- {"message": "AddTranscript", "metadata": {"start_time": 0.0, "end_time":

0.9488123643240011, "transcript": "One two three."},

 "results": [{"alternatives": [{"confidence": 1.0, "content": "One"}],

 "start_time": 0.47999998927116394, "end_time": 0.5399999618530273,

"type": "word"},

 {"alternatives": [{"confidence": 1.0, "content": "to"}],

 "start_time": 0.6091238623430891, "end_time": 0.7498992613545260, "type":

"word"}

 {"alternatives": [{"confidence": 0.96, "content": "three"}],

 "start_time": 0.8022338627780892, "end_time": 0.9488123643240011, "type":

"word"}

 {"alternatives": [{"confidence": 1.0, "content": "."}],

 "start_time": 0.9488123643240011, "end_time": 0.9488123643240011, "type":

"punctuation", "is_eos": true}

]}

"[closing handshake]"

-> {"message":"EndOfStream","last_seq_no":3}

 <- {"message": "EndOfTranscript"}

29

Examples how to use the V2 API
The V2 WebSocket Speech API aligns with other Speechmatics platforms such as the Batch Virtual Appliance and

Speechmatics Cloud Offering.

WebSocket URI

30

To use the V2 API you use the '/v2' endpoint for the URI, for example:

ws://rt-asr.example.com:9000/v2

If you are using the Real-time Container then you will need to use the ws:// scheme, for example: ws://rt-

asr.example.com:9000/v2 . If you need to access the Real-time Container over a secure WebSocket connection

from you client, then you'll need to consider an SSL offload from a load-balancer or similar.

Session Configuration

The V2 API is configured by sending a StartRecognition message initially when the WebSocket connection

begins. We have designed the format of this message to be very similar to the config.json object that has been

used for a while now with the Speechmatics batch mode platforms (Batch Virtual Appliance, Batch Container and

Cloud Offering). The transcription_config section of the message should be almost identical between the

two modes. There are some minor differences (for example batch features a different set of diarization options,

and real-time features some settings which don't apply to batch such as max_delay).

TranscriptionConfig

A transcription_config structure is used to specify various configuration values for the recognition engine

when the StartRecognition message is sent to the server. All values apart from language are optional.

Here's an example of calling the StartRecognition message with this structure:

{

 "message": "StartRecognition",

 "transcription_config": {

 "language": "en"

 },

 "audio_format": {

 "type": "raw",

 "encoding": "pcm_f32le",

 "sample_rate": 16000

 }

}

AddAudio

Once the websocket session is setup and you've successfully called StartRecognition you'll receive a

RecognitionStarted message from server. You can then just to send the binary audio chunks, which we refer to

as AddAudio messages.

You would replace this in the V2 API with much simpler code:

// NEW V2 EXAMPLE

function addAudio(audioData) {

 ws.send(audioData);

 seqNoIn++;

}

We recommend that you do not send more than 10 seconds of audio data or 500 individual AddAudio messages

ahead of time.

Final and Partial Transcripts

31

The AddTranscript and AddPartialTranscript messages from the server output a JSON format which

aligns with the JSON output format used by other Speechmatics products. There is a now a results list which

contains the transcribed words and punctuation marks along with timings and confidence scores. Here's an

example of a final transcript output:

{

 "message":"AddTranscript",

 "results":[

 {

 "start_time":0.11670026928186417,

 "end_time":0.4049381613731384,

 "alternatives":[

 {

 "content":"gale",

 "confidence":0.7034434080123901

 }

],

 "type":"word"

 },

 {

 "start_time":0.410246878862381,

 "end_time":0.6299981474876404,

 "alternatives":[

 {

 "content":"eight",

 "confidence":0.670033872127533

 }

],

 "type":"word"

 },

 {

 "start_time":0.6599999666213989,

 "end_time":1.0799999237060547,

 "alternatives":[

 {

 "content":"becoming",

 "confidence":1.0

 }

],

 "type":"word"

 },

 {

 "start_time":1.0799999237060547,

 "end_time":1.6154180765151978,

 "alternatives":[

 {

 "content":"cyclonic",

 "confidence":1.0

 }

],

 "type":"word"

 },

 {

 "start_time":1.6154180765151978,

32

 "is_eos":true,

 "end_time":1.6154180765151978,

 "alternatives":[

 {

 "content":".",

 "confidence":1.0

 }

],

 "type":"punctuation"

 }

],

 "metadata":{

 "transcript":"gale eight becoming cyclonic.",

 "start_time":190.65994262695312,

 "end_time":194.46994256973267

 },

 "format":"2.7"

}

You can use the metadata.transcript property to get the complete final transcript as a chunk of plain text.

The format property describes the exact version of the transcription output format, which is currently 2.7. This

may change in future releases if the output format is updated.

Requesting an enhanced model

Speechmatics supports two different models within each language pack; a standard or an enhanced model. The

standard model is the faster of the two, whilst the enhanced model provides a higher accuracy, but a slower

turnaround time.

The enhanced model is a premium model. Please contact your account manager or Speechmatics if you would like

access to this feature.

An example of requesting the enhanced model is below

{

 "message": "StartRecognition",

 "audio_format": {

 "type": "raw",

 "encoding": "pcm_f32le",

 "sample_rate": 16000

 },

{

 "transcription_config": {

 "language": "en",

 "operating_point": "enhanced"

 }

}

Please note: standard , as well as being the default option, can also be explicitly requested with the

operating_point parameter.

Domain Language Packs

Some Speechmatics language packs are optimized for specific domains where high accuracy for specific

vocabulary and terminology is required. Using the domain parameter provides additional transcription accuracy,

33

and must be used in conjunction with a standard language pack (this is currently limited to the "finance" domain

and supports the "en" language pack). An example of how this looks is below:

{

 "transcription_config": {

 "language": "en",

 "domain": "finance"

 }

}

These domain language packs are built on top of our global language packs so give the highest accuracy in

different acoustic environments that our customers have come to expect.

Please note that if you are using the "Finance" domain language pack you will need to use the "en-finance"

container image, located at speechmatics-docker-public.jfrog.io/batch-asr-transcriber-en-finance .

More details about how to pull container images can be found here

It is expected that whilst there will be improvements for the specific domain there can be degradation in accuracy

for other outside domains.

Advanced punctuation

All Speechmatics language packs support Advanced Punctuation. This uses machine learning techniques to add in

more naturalistic punctuation, improving the readability of your transcripts.

The following punctuation marks are supported for each language:

Language(s) Supported Punctuation Comment

Cantonese, Mandarin ， 。 ？ ！ 、 Full-width punctuation supported

Japanese 。 、 Full-width punctuation supported

Hindi । ? , !

All other languages . , ! ?

If you do not want to see any of the supported punctuation marks in the output, then you can explicitly control this

through the punctuation_overrides settings, for example:

"transcription_config": {

 "language": "en",

 "punctuation_overrides": {

 "permitted_marks":[".", ","]

 }

}

This will exclude exclamation and question marks from the returned transcript.

All Speechmatics output formats support Advanced Punctuation. JSON output places punctuation marks in the

results list marked with a type of "punctuation" .

Note: Disabling punctuation may slightly harm the accuracy of speaker diarization. Please see the "Speaker

diarization post-processing" section in these docs for more information.

Example Usage

https://docs.speechmatics.com/en/real-time-container/quick-start/#pulling-the-image
http://localhost:63808/ConfiguringtheJobRequest.md#Speaker-diarization-post-processing

34

This section provides some client code samples that show simple usage of the V2 WebSockets Speech API. It

shows how you can test your Real-Time Appliance or Container using a minimal WebSocket client.

JavaScript

The basic usage of the WebSockets interface from a JavaScript client is shown in this section. In the first instance

you setup the connection to the server and define the various event handlers that are required:

var ws = new WebSocket('ws://rtc:9000/v2');

ws.binaryType = "arraybuffer";

ws.onopen = function(event) { onOpen(event) };

ws.onmessage = function(event) { onMessage(event) };

ws.onclose = function(event) { onClose(event) };

ws.onerror = function(event) { onError(event) };

Change the hostname from the above example to match the IP address or hostname of your Real-Time Appliance

or Container. The port used is 9000 and you need to make sure that you add '/v2' to the WebSocket URI. Note that

the Real-time Container only supports WebSocket (ws) protocol. You should also ensure that the binaryType

property of the WebSocket object is set to "arraybuffer" .

In the onopen handler you initiate the session by sending the StartRecognition message to the server, for

example:

function onOpen(evt) {

 var msg = {

 "message": "StartRecognition",

 "transcription_config": {

 "language": "en",

 "output_locale": "en-GB"

 },

 "audio_format": {

 "type": "raw",

 "encoding": "pcm_s16le",

 "sample_rate": 16000

 }

 };

 ws.send(JSON.stringify(msg));

}

An onmessage handler is where you will respond to the server-initiated messages sent by the appliance or

container, and decide how to handle them. Typically, this involves implementing functions to display or process

data that you get back from the server.

function onMessage(evt) {

 var objMsg = JSON.parse(evt.data);

 switch (objMsg.message) {

 case "RecognitionStarted":

 recognitionStarted(objMsg); // TODO

 break;

 case "AudioAdded":

 audioAdded(objMsg); // TODO

 break;

35

 case "AddPartialTranscript":

 case "AddTranscript":

 transcriptOutput(objMsg); // TODO

 break;

 case "EndOfTranscript":

 endTranscript(); // TODO

 break;

 case "Info":

 case "Warning":

 case "Error":

 showMessage(objMsg); // TODO

 break;

 default:

 console.log("UNKNOWN MESSAGE: " + objMsg.message);

 }

}

Once the WebSocket is initialized, the StartRecognition message is sent to the appliance or container to setup

the audio input. It is then a matter of sending audio data periodically using the AddAudio message.

Your AddAudio message will take audio from a source (for example microphone input, or an audio stream) and

pass it to the Real-Time Appliance or Container.

// Send audio data to the API using the AddData message.

function addAudio(audioData) {

 ws.send(audioData);

 seqNoIn++;

}

In this example we use a counter seqNoIn to keep track of the AddAudio messages we've sent.

A set of server-initiated transcript messages are triggered to indicate the availability of transcribed text:

AddTranscript

AddPartialTranscript

See above for changes to the JSON output schema in the V2 API. For full details of the output schema refer to the

AddTranscript section in the API reference.

Finally, the client should send an EndOfStream message and close the WebSocket when it terminates. This

should be done in order to release resources on the appliance or container and allow other clients to connect and

use resources.

The Mozilla developer network provides a useful reference to the WebSocket API.

Python

Standalone Real-Time Container Usage

If you are using the Real-Time Container, you can use a Python library called speechmatics-python . This library

is available on Github here. You can also use this library for the Real-Time Virtual Appliance.

http://localhost:63808/speech-api-guide#addtranscript
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://github.com/speechmatics/speechmatics-python

36

The speechmatics-python library can be incorporated into your own applications, used as a reference for your

own client library, or called directly from the command line (CLI) like this (to pass a test audio file to the appliance

or container):

speechmatics transcribe --url ws://rtc:9000/v2 --lang en --ssl-mode none test.mp3

Note that configuration options are specified on the command-line as parameters, with a '_' character in the

configuration option being replaced by a '-'. The CLI option accepts an audio stream on standard input, meaning

that you can stream in a live microphone feed. To get help on the CLI use the following command:

speechmatics transcribe --help

The library depends on Python 3.7 or above, since it makes use of some of the newer asyncio features

introduced with Python 3.7.

Formatting Common Entities

Overview

Entities are commonly recognisable classes of information that appear in languages, for example numbers and

dates. Formatting these entities is commonly referred to as Inverse Text Normalisation (ITN). Using ITN,

Speechmatics will output entities in a predictable, consistent written form, reducing post-processing work

required aiming to make the transcript more readable.

The language pack will use these formatted entities by default in the transcription. Additional metadata about

these entities can be requested via the API including the spoken words without formatting and the entity class that

was used to format it.

Supported Languages

Entities are supported in the following languages:

Cantonese

Chinese Mandarin (Simplified and Traditional)

English

French

German

Hindi

Italian

Japanese

Portuguese

Russian

Spanish

Using the enable_entities parameter

Speechmatics now includes an enable_entities parameter. This can be requested via the API. By default this is

false .

Changing enable_entities to true will enable a richer set of metadata in the JSON output only. Customers

can choose between the default written form, spoken form, or a mixture, for their own workflows.

The changes are as following:

37

A new type - entity in the JSON output in addition to word and punctuation . For example: "1.99"

would have a type of entity and a corresponding entity_class of decimal

The entity will contain the formatted text in the content section, like other words and punctuation

The content can include spaces, non-breaking spaces, and symbols (e.g. $/£/%)

A new output element entity , entity_class has been introduced. This provides more detail about

how the entity has been formatted. A full list of entity classes is provided below.

The start and end time of the entity will span all the words that make up that entity

The entity also contains two ways that the content will be output:

spoken_form - Each individual word within the entity, written out in words as it was spoken.

Each individual word has its own start time, end time, and confidence score. For example: "one",

"million", "dollars"

written_form - The same output as within entity content, with a type of word instead. If

there are spaces in the content it will be split into individual words. For example: "$1", "million"

Configuration example

Please see an example configuration file that would request entities:

{

 "message": "StartRecognition",

 "transcription_config": {

 "language": "en",

 "enable_entities": true

 }

}

Different entity classes

The following entity_classes can be returned. Entity classes indicate how the numerals are formatted. In some

cases, the choice of class can be contextual and the class may not be what was expected (for example "2001"

may be a "cardinal" instead of "date"). The number of entity_classes may grow or shrink in the future.

N.B. Please note existing behaviour for English where numbers from zero to 10 (excluding where they are output

as a decimal/money/percentage) are output as words is unchanged.

Entity

Class
Formatting Behaviour

Spoken Word Form

Example

Written Form

Example

alphanum

A series of three or more

alphanumerics, where an alphanumeric

is a digit less than 10, a character or

symbol

triple seven five four 77754

cardinal

Any number greater than ten is

converted to numbers. Numbers ten or

below remain as words. Includes

negative numbers

nineteen 19

credit card

A long series of spoken digits less than

10 are converted to numbers. Support

for common credit cards

one one one one two

two two two three three

three three four four four

four

1111222233334444

date Day, month and year, or a year on its fifteenth of January 15th of January

38

own. Any words spoken in the date are

maintained (including "the" and "of")

twenty twenty two 2022

decimal
A series of numbers divided by a

separator
eighteen point one two 18.12

fraction

Small fractions are kept as words

("half"), complex fractions are

converted to numbers separated by "/"

three sixteenths 3/16

money

Currency words are converted to

symbols before or after the number

(depending on the language)

twenty dollars $20

ordinal
Ordinals greater than 10 are output as

numbers
forty second 42nd

percentage
Numbers with a per cent have the per

cent converted to a % symbol
duecento percento 200%

span
A range expressed as "x to y" where x

and y correspond to another entity class

one hundred to two

hundred million pounds
100 to £200 million

time Times are converted to numbers eleven forty a m 11�40 a.m.

word
Entities that do not match a specific

class
hundreds hundreds

Output locale styling

Each language has a specific style applied to it for thousands, decimals and where the symbol is positioned for

money or percentages.

For example

English contains commas as separators for numbers above 9999 (example: "20,000"), the money symbol

at the start (example: "$10") and full stops for decimals (example: "10.5")

German contains full stops as separators for numbers above 9999 (example: "20.000"), the money

symbol comes after with a non-breaking space (example: "10 $") and commas for decimals (example:

"10,5")

French contains non-breaking spaces as separators for numbers above 9999 (example: "20 000"), the

money symbol comes after with a non-breaking space (example: "10 $") and commas for decimals

(example: "10,5")

Example output

Here is an example of a transcript requested with enable_entities set to true :

An entity that is "17th of January 2022", including spaces

The start and end times span the entire entity

An entity_class of date

The spoken_form is split into the following individual words: "seventeenth", "of", "January",

"twenty", "twenty", "two". Each word has its own start and end time

the written_form split into the following individual words: "17th", "of", "January", "2022". Each

word has its own start and end time

39

 [{

 "message": "AddTranscript",

 "format": 2.7,

 "results": [{

 "alternatives": [{

 "confidence": 1,

 "content": "17th of January 2022",

 "language": "en"

 }],

 "end_time": 3.0899999141693115,

 "entity_class": "date",

 "spoken_form": [{

 "alternatives": [{

 "confidence": 1,

 "content": "Seventeenth",

 "language": "en"

 }],

 "end_time": 1.3799999952316284,

 "start_time": 0.8399999737739563,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "of",

 "language": "en"

 }],

 "end_time": 1.4399999380111694,

 "start_time": 1.3799999952316284,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "January",

 "language": "en"

 }],

 "end_time": 1.9199999570846558,

 "start_time": 1.4399999380111694,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "twenty",

 "language": "en"

 }],

 "end_time": 2.25,

 "start_time": 1.9199999570846558,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

40

 "content": "twenty",

 "language": "en"

 }],

 "end_time": 2.549999952316284,

 "start_time": 2.25,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 0.9504331946372986,

 "content": "two",

 "language": "en"

 }],

 "end_time": 3.0899999141693115,

 "start_time": 2.549999952316284,

 "type": "word"

 }

],

 "start_time": 0.8399999737739563,

 "type": "entity",

 "written_form": [{

 "alternatives": [{

 "confidence": 1,

 "content": "17th",

 "language": "en"

 }],

 "end_time": 1.1999999682108562,

 "start_time": 0.8399999737739563,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "of",

 "language": "en"

 }],

 "end_time": 1.559999962647756,

 "start_time": 1.1999999682108562,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "January",

 "language": "en"

 }],

 "end_time": 1.9199999570846558,

 "start_time": 1.559999962647756,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "2022",

41

 "language": "en"

 }],

 "end_time": 3.0899999141693115,

 "start_time": 1.9199999570846558,

 "type": "word"

 }

]

 }],

 "metadata": {

 "end_time": 5.16,

 "start_time": 0,

 "transcript": "17th of January 2022 "

 }

}]

If enable_entities is set to false , the output is as below:

 [{

 "message": "AddTranscript",

 "format": 2.7,

 "results": [{

 "alternatives": [{

 "confidence": 1,

 "content": "17th",

 "language": "en"

 }],

 "end_time": 1.1999999682108562,

 "start_time": 0.8399999737739563,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "of",

 "language": "en"

 }],

 "end_time": 1.559999962647756,

 "start_time": 1.1999999682108562,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "January",

 "language": "en"

 }],

 "end_time": 1.9199999570846558,

 "start_time": 1.559999962647756,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "2022",

42

 "language": "en"

 }],

 "end_time": 3.0899999141693115,

 "start_time": 1.9199999570846558,

 "type": "word"

 }

],

 "metadata": {

 "end_time": 5.16,

 "start_time": 0,

 "transcript": "17th of January 2022 "

 }

}]

