
1

Real-time Virtual Appliance 3.5.0

2

Table of Contents
Real-time Virtual Appliance

Important Notices

What's New

Issues Fixed

Known Limitations

Supported Platforms

Form Factors

Upgrade Path

Installation

Real-time Virtual Appliance Installation and Admin Guide

System requirements

Host requirements

Real-time Virtual Appliance requirements

Real-Time Virtual Appliance

Batch Virtual Appliance

Downloading the appliance

Importing the appliance

VMware ESXi

VMware Workstation Player

VirtualBox

Amazon Web Services

Prerequisites

Uploading the OVA file to S3

Importing the OVA as AMI instance

Creating an Import Service Role

Creating a Role Policy

Importing the OVA

Security

Real-time Virtual Appliance

Batch Virtual Appliance

Launching a Virtual Appliance

Network Configuration

Network interface mapping

VMware ESXi

VMware Workstation Player

VirtualBox

IP Configuration

Configure static IP

Configure DHCP IP

Licensing

Applying License

Verify and Go (Real-Time)

Verify the service

Go!

SSL Configuration

Default behaviour

Management API Examples

Monitoring API Example

Speech API Example

Using your own SSL certificate and private key

Uploading the certificate and key to the appliance

3

Disabling HTTP access

Enable Basic Authentication for Admin

FAQs

How do I reset the SSL settings?

What if I forget the admin password?

What versions of SSL/TLS do you support?

What cipher suites do you support?

Networking

Network Requirements

Configure Static IP

Configure DHCP

Firewall Ports

Using Proxies

Virtual Appliance Scaling

Real-Time Virtual Appliance Scaling

Worker Limits

View Maximum Workers

Setting Maximum Workers

Batch Virtual Appliance Scaling

Worker Limits

View Maximum Workers

Setting Maximum Workers

Monitoring

Services

Service status

Service restart

Access Logs

System restart

Troubleshooting

Transcription job failure

Illegal instruction errors

Console for Advanced Troubleshooting

License

Networking

Reboot and Shutdown

Security

Services

Tools

Workers

Security

Overview

Ports and Protocols

Custom Dictionary Cache

View Cache Usage

Purge Cache Contents

Introduction

Overview

Terms

Input Formats

Transcript Outputs

Final transcripts

Partial transcripts

Advanced Punctuation

4

The WebSocket Protocol

Realtime API

Client ↔ API endpoint

Messages

StartRecognition

AddAudio

AudioAdded

Implementation details

AddTranscript

AddPartialTranscript

SetRecognitionConfig

EndOfStream

EndOfTranscript

Supported audio types

Transcription config

Additional words

Output locale

Punctuation overrides

Error messages

Error types

Warning messages

Warning types

Info messages

Info message types

Example communication

Examples how to use the V2 API

WebSocket URI

Session Configuration

TranscriptionConfig

AddAudio

Final and Partial Transcripts

Advanced Punctuation

Example Usage

JavaScript

Python

Real-Time Virtual Appliance Usage

Standalone Real-Time Container Usage

Formatting Common Entities

Overview

Supported Languages

Using the enable_entities parameter

Configuration example

Different entity classes

Output locale styling

Example output

5

Real-time Virtual Appliance

Important Notices

The legacy V1 API that the Real-time Virtual Appliance currently supports will be discontinued in a future release. We

recommend that customers familiarise themselves with the configuration object as described in the Speech API Guide.

Future notices will be provided to announce the end of life of the V1 API, and provide detailed instructions on migrations

to the V2 API.

Currently, Speechmatics supports 2 python libraries for use with our Real-time products. smwebsocket-py is

recommended for use for the Real-time Virtual Appliance, and speechmatics-python is recommended for use in both

our Real-time Container and our Real-time Virtual Appliance. In a future release we will exclusively support

speechmatics-python as our preferred Python library. We recommend you familiarise yourself with this library. Please

contact support@speechmatics.com if you require access to this library.

What's New

New language packs for English (en) and Spanish (es)

Caching support for Custom Dictionary to improve performance where the same Custom Dictionary is repeatedly

used

Issues Fixed

The following issues are addressed since the previous release:

Issue

ID
Summary Resolution Description

REQ-

10688

Memory leak on client disconnect with

pending buffered audio

Clients sending data to a worker faster than it can be

processed could cause a memory leak; this has now been

addressed.

REQ-

11829

No worker available in RTVA in unclean

disconnects
This was caused by a race condition that has now been fixed.

REQ-

13430

Virtual Appliance conflict of internal

(docker) and customer subnets

A smaller subnet is now used to reduce the likelihood of

conflicts.

REQ-

14062

There have been some instances of a

Spanish file only being partially

transcribed

The latest rebuild of Spanish (es) resolves this issue.

Known Limitations

The following are known issues in this release:

Issue

ID
Summary Detailed Description and Possible Workarounds

REQ-

1409

Proteus HCL with

<unk> causes out of

memory error

A custom dictionary list that contains the word '' causes the worker to crash.

REQ-

7549

Memory leak

affecting gRPC

There is a small memory leak in the gRPC Python server

(https://github.com/grpc/grpc/issues/5913).

REQ-

10160

Advanced

punctuation for

Spanish (es) does

Inverted marks [¿ ¡] are not currently available for Spanish advanced

punctuation.

mailto:support@speechmatics.com
https://github.com/grpc/grpc/issues/5913

6

not contain

inverted marks.

REQ-

10627

Double full stops

when acronym is at

the end of the

sentence

If there is an acronym at the end of the sentence, then a double full stop will be

output, for example: "team G.B.."

REQ-

11087

Additional white

space appearing

before the very last

end of sentence

punctuation

character.

Its been observed that additional white space can occur before a full-stop '.' in

some transcripts. This can be parsed and removed by a post-processing step if

necessary.

REQ-

11135

3.2.0 introduced

unwanted

hesitations in

transcripts.

Due to changes in the way that training data is now ingested to improve the

accuracy of spontaneous speech for English (en) there is a greater likelihood that

hesitations will be included in the output transcripts. We plan to support a

hesitation filtering capability in a future release for customers that do not want to

see hesitations on transcripts.

REQ-

11792

Speaker change

token positioning is

incorrect

We are aware of a consistent mis-placing of the speaker change token after the

first word of the new speakers' sentence rather than before it.

REQ-

12202

High memory

usage when using

custom dictionary

It has been observed that when using custom dictionary an additional 800-

1700MB of memory is required (depending on the size of the wordlist used).

Supported Platforms

Virtual Appliance image (OVA) for installation on:

VMware ESXi 6.5+ or VMware Workstation Player.

VirtualBox 5.2+

Amazon EC2

See the Installation and Admin Guide for details on the minimum specifications for the VM. The maximum number of

concurrent jobs (maxworkers) that you can run on a single appliance is 30.

Form Factors

There are four variants of the Real-time Virtual Appliance.

Variant Image Size Max. Disk Space Languages

nano 10GB 40GB en

mini 14GB 40GB en, de, es

midi 26GB 60GB en, de, es, fr, ko, ja, nl, pt

maxi 42GB 80GB en, de, es, fr, ko, ja, nl, pt, it, da, pl, ca, hi, ru, sv

plus 46GB 80GB en, cmn, no, ar, bg, cs, el, fi, hu, hr, lt, lv, ro, sk, sl, tr, ms

Upgrade Path

Remove the license from your old appliance (see the Admin Guide), then re-import the new OVA and configure

networking as per the Installation and Admin guide. You will need to re-apply the license code you have once the OVA

has imported.

7

Installation

Upload the OVA to VMWare ESX, VMWare Workstation Player, or VirtualBox. See the Installation and Admin Guide for

more information.

Real-time Virtual Appliance Installation and Admin Guide
This guide explains how to install and administer the Real-time Virtual Appliance using the Management REST API.

The Speechmatics virtual appliance is available in two modes: real-time and batch. For the most part installation and

administration are identical for both modes. Where differences exist this is explicitly noted in this guide. In addition, a

number of different form factors are available depending on the language packs you need to access. Check release notes

for up-to-date information on the available form factors.

Note: Most of the code examples in these docs use HTTP rather than HTTPS to communicate with the appliance.

However, we recommend using HTTPS for your production deployments. Our appliances support HTTPS from version

3.4.0. For information on SSL/HTTPS configuration, see the 'SSL Configuration' section of the docs.

System requirements
The Speechmatics Real-time Virtual Appliance operates on a hypervisor host system. For this version of the appliance,

the following hypervisors are supported:

VMware®

VirtualBox

AWS EC2

For the virtual appliance to operate as required, the host must meet the requirements and have the resources available as

defined below.

Host requirements

The virtual appliance can operate in any VMware supported environment that claims support for VMware virtual hardware

specification 9 and above (see https://kb.vmware.com/s/article/1003746).

The host machine requires a processor with following minimum specification: Intel® Xeon® CPU E5-2630 v4 (Sandy

Bridge) 2.20GHz (or equivalent). This is important because these chipsets (and later ones) support Advanced Vector

Extensions (AVX). The machine learning algorithms used by Speechmatics ASR require the performance optimizations

that AVX provides. You should also ensure that your hypervisor has AVX enabled.

See below for minimum Real-time Virtual Appliance VM (guest) specifications; the host machine must have enough

resources (processor, memory and storage) to run the hypervisor, the guest VMs you intend to host on it, plus any other

processes you expect to run on it. Vendor guidelines should be followed for other host requirements and installation

process.

For VMWare, the document Performance Best Practices for VMware vSphere® 6.0 contains a comprehensive overview of

hardware considerations and recommendations on how to optimize your host platform. See

https://www.vmware.com/support.html for up-to-date technical information on VMWare.

For VirtualBox, please consult the online documentation: https://www.virtualbox.org/wiki/Documentation

For Amazon EC2, the following link explains how to setup a VM using an Amazon S3 to store the OVA file:

https://docs.aws.amazon.com/vm-import/latest/userguide/vmimport-image-import.html.

Real-time Virtual Appliance requirements

Real-Time Virtual Appliance

The Speechmatics Real-Time Real-time Virtual Appliance must be allocated the following minimum specification:

https://kb.vmware.com/s/article/1003746
https://www.vmware.com/support.html
https://www.virtualbox.org/wiki/Documentation
https://docs.aws.amazon.com/vm-import/latest/userguide/vmimport-image-import.html

8

1 vCPU

4GB RAM

Up to 38GB hard disk space

For each concurrent input stream the appliance requires an additional 1 vCPU and up to 1.5GB RAM. If you are using the

custom dictionary (additional words) feature then each concurrent input stream that is configured to use it will require up

to 3GB RAM.

Batch Virtual Appliance

For operation in batch mode, the following minimum specifications are required:

2 vCPUs

8GB RAM

Up to 44GB hard disk space

Downloading the appliance
A download link will be provided by Speechmatics through the solutions section of the support portal

(https://support.speechmatics.com). The latest version of the appliance can be located within the solutions section.

Select the required version number within the "Real-time Virtual Appliance" area (for example {{ book.product.version }})

to view the download link and all associated documentation for the virtual appliance. Once the download link is selected

the download will begin, or a save file prompt will appear, enabling the file to be saved (the exact method will depend on

the web browser being used). After the download a file with an ".ova" extension will be stored on the computer.

An account is required to access the documents and download link in the support portal. If an account is not available or

the "Real-time Virtual Appliance" section is not visible in the support portal, please contact Speechmatics Support

support@speechmatics.com for help.

Importing the appliance
Once the .ova file has been downloaded, it is ready to be imported into the host you have already prepared. Please

ensure that the host meets the requirements stated earlier in this guide, then based on the hypervisor environment follow

the instructions below.

VMware ESXi

The following steps can be used to import the virtual appliance into VMWare ESXi 6.5:

Open the vSphere web console on the host

Choose "Virtual Machines" from the Navigator

Select "Create/Register VM" option

A wizard will appear:

Choose "Deploy a virtual machine from an OVF or OVA file" and click "Next"

Enter a VM name e.g. "SM_Batch_01", and drag the downloaded .ova file onto the window and click

"Next"

Select a datastore that has enough capacity to store the virtual appliance and click "Next"

From the "VM network" dropdown box, select a network

Choose Thin or Thick disk provisioning (the Speechmatics Real-time Virtual Appliance supports either.

Choose the options that is right for the hosting environment refer to VMWare documentation for help

and click "Next"

Check the details are correct and click "Finish"

The virtual appliance will import. This can take a few minutes depending on the datastore chosen.

https://support.speechmatics.com/
mailto:support@speechmatics.com

9

Once the VM has imported it should be visible on the vSphere web console:

VMware Workstation Player

Open VMware Workstation Player

From the top options bar select "Player", then "File" and "Open..."

The "Open Virtual Machine" window will appear. Navigate to the ".ova" file you downloaded earlier, select it, click

"Open"

Enter a VM name e.g. "SM_Batch_01"

A default storage location for the virtual appliance will be shown, the can be changed if required. Click "Import".

Dropdown box from the top options bar, click on "File"

The virtual appliance will import. This can take a few minutes depending on the hard disk chosen

Once the VM has imported it should be visible on the Workstation player:

VirtualBox

The following steps can be used to import the virtual appliance into VirtualBox 5.2 or above.

Open VirtualBox

From the Manager window select "File", then "Import Appliance..."

10

In the Name field, name the Real-time Virtual Appliance e.g. "SM_Batch_01"

Browse to the OVA file and click on the "Import" button

Once the VM has imported it should be visible on the VirtualBox Manager:

Amazon Web Services

This section explains how to create a Real-time Virtual Appliance EC2 instance on the Amazon Web Services (AWS)

platform by using the AWS VM Import/Export tool. This tool is designed for importing VM images from the OVA file format

provided by Speechmatics. You will import the image as an Amazon Machine Image (AMI), from which you can then

launch machine instances.

The information in this section is taken from the official AWS documentation and parts of it have been extracted to focus

more on the particulars of the Speechmatics Real-time Virtual Appliance. For more details of the Amazon VM image

import process, please refer to https://docs.aws.amazon.com/vm-import/latest/userguide/vmimport-image-import.html

Prerequisites

There are a few pre-requisites that you will need to have setup before you can follow the instructions in this section:

AWS Command Line Interface (CLI)

Python 2.6.5 or higher

Please follow the recommendations on configuration of the AWS CLI by referring to the Getting Started guide.

Uploading the OVA file to S3

This section describes the process of uploading the Speechmatics OVA file to an Amazon S3 bucket from where it can be

imported as an AMI instance. We recommend using a bucket in the same region where you want the AMI to be created

and made available.

Once you've identified or created the S3 bucket on your account where the Speechmatics Real-time Virtual Appliance

OVA will be uploaded to, you can use any of the tools below to help with the upload of the OVA file.

The following AWS SDK libraries support S3 multipart upload (which is the recommended method given the large

size of the OVA file):

AWS SDK for Java

AWS SDK for .NET

AWS SDK for PHP

https://docs.aws.amazon.com/vm-import/latest/userguide/vmimport-image-import.html
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingAWSSDK.html

11

AWS SDK for Python (Boto)

AWS SDK for Ruby

You can also use the Multipart Upload API directly

User interface tools, for instance:

S3 Browser

CloudBerry S3 Explorer

For more information about the multipart uploads, see the AWS documentation.

Importing the OVA as AMI instance

After the Virtual Appliance OVA file has been successfully uploaded to an S3 bucket, it's time to import the image.

See the AWS documentation that covers uploading an image for full details.

The steps that you will perform in this section include (in order):

Creating a Service Role on your AWS account

Assigning a Role Policy to this Service Role

Importing the OVA for the Real-time Virtual Appliance from the S3 bucket file

Creating an Import Service Role

First of all, a service role needs to be created on your AWS account. This allows certain operations, including

downloading images from an S3 bucket.

Create a file named trust-policy.json with the following policy:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": { "Service": "vmie.amazonaws.com" },

 "Action": "sts:AssumeRole",

 "Condition": {

 "StringEquals":{

 "sts:Externalid": "vmimport"

 }

 }

 }

]

}

Then use the create-role command from the AWS CLI to create a role named vmimport . You need to specify the full

path of the trust-policy.json file:

aws iam create-role --role-name vmimport --assume-role-policy-document file://trust-policy.json

You need to ensure the that file:// prefix is prepended to the filename.

Creating a Role Policy

Create a file named role-policy.json with the following policy. Where you see ova-bucket it will need to be

replaced with the name of the S3 bucket where the OVA file is stored.

{

 "Version":"2012-10-17",

 "Statement":[

 {

 "Effect":"Allow",

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingRESTAPImpUpload.html
http://s3browser.com/
https://www.cloudberrylab.com/explorer
https://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html
https://docs.aws.amazon.com/vm-import/latest/userguide/vmimport-image-import.html#upload-image

12

 "Action":[

 "s3:GetBucketLocation",

 "s3:GetObject",

 "s3:ListBucket"

],

 "Resource":[

 "arn:aws:s3:::ova-bucket",

 "arn:aws:s3:::ova-bucket/*"

]

 },

 {

 "Effect":"Allow",

 "Action":[

 "ec2:ModifySnapshotAttribute",

 "ec2:CopySnapshot",

 "ec2:RegisterImage",

 "ec2:Describe*"

],

 "Resource":"*"

 }

]

}

Use the put-role-policy command to attach the policy to the role. You must specify the full path to the location of

the role-policy.json :

aws iam put-role-policy --role-name vmimport --policy-name vmimport --policy-document

file://role-policy.json

Importing the OVA

Importing the virtual appliance image (OVA) to Amazon EC2 as an Amazon Machine Image (AMI) is the next step.

Create a file named containers.json with the following content. Where you see ova-bucket it will need to be

replaced with the name of the S3 bucket where the OVA file is stored. The below example has a file named

rtappliance-2.0.1-b21086.ova .

[

 {

 "Description": "Real Time Virtual Appliance OVA",

 "Format": "ova",

 "UserBucket": {

 "S3Bucket": "ova-bucket",

 "S3Key": "rtappliance-1.1.0-b21086.ova"

 }

}]

Use the import-image command to create an import task (Specify the full path to the location of the

containers.json):

aws ec2 import-image --description "Real Time Virtual Appliance OVA" --disk-containers

file://containers.json

The resulting JSON output will show an ImportTaskId which you can use to check the status of the import task. You

do this by running the describe-import-image-tasks command:

aws ec2 describe-import-image-tasks --import-task-ids import-ami-abcd1234

13

You need to replace the task identifier with the ImportTaskId for your import task (import-ami-abcd1234 in this

example).

When the status is in the completed state the AMI is ready to use.

Security

For more background on creating security groups refer to the official AWS documentation. See the Ports and Protocols

section for a list of the ports that are used. These ports should be opened so that you can submit jobs and manage and

monitor the Speechmatics Virtual Appliance.

Real-time Virtual Appliance

If you setup HTTPS as described in the 'SSL Configuration' section of these docs then you only need to expose port 443,

unless you require use of the v1 WebSockets API, which requires use of port 9000. We recommend use of our updated

v2 API unless you are a customer who has already implemented code against our v1 API.

Batch Virtual Appliance

If you setup HTTPS as described in the 'SSL Configuration' section of these docs then you only need to expose port 443.

Launching a Virtual Appliance

Now that the Virtual Appliance has been imported, it will be available as an AMI which can be launched as an instance. To

launch a Speechmatics Virtual Appliance, do the following:

Login to the AWS console and find your image under EC2 Service | Images

Right-click the image and choose Launch

Refer to the System requirements section of the Speechmatics Quick Start Guide or Admin Guide to identify

how much system resources is required for your set up. Choose the instance type that meets your requirement

Choose Review and Launch from the console. Setup the Key Pair if required and choose Launch again.

Full instructions for launching instances can be found here:

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/launching-instance.html

Network Configuration
Before starting the virtual appliance for the first time, it is important to consider the network settings that will be used.

The section below describes the options.

Network interface mapping

Whilst the virtual appliance is powered off, the virtual network adaptor should be mapped to the correct physical adaptor

on the host. The virtual interface must be mapped to a physical adaptor on which the Speechmatics Real-time Virtual

Appliance will be contacted. Steps are provided below for the supported hypervisors.

VMware ESXi

There is nothing to configure here. The network as specified during the import stage described above will be used.

VMware Workstation Player

Speechmatics recommends using bridged network mode. To ensure bridged networking is selected:

Open VMware Workstation Player

Right click on the virtual appliance e.g. "SM_App_01", and select "Settings..."

Select the "Network Adapter" in the devices list

Select "Bridged: Connected directly to the physical network"

Click "OK"

This will result in the VM using an IP Address for its use that is independent from that of the host.

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html
http://localhost:61835/security.md#ports-and-protocols
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/launching-instance.html

14

VirtualBox

Speechmatics recommends using bridged network mode. To ensure bridged networking is selected:

Open VirtualBox

Right click on the virtual appliance and select "Settings..."

Select "Network" and from the "Attached to:" dropdown box, select "Bridged Adaptor"

Click "OK"

This will result in the VM using an IP Address for its use that is independent from that of the host.

IP Configuration

When the Speechmatics Real-time Virtual Appliance is started, the default behavior will be to dynamically acquire an IP

address. If there is no DHCP service available on the network, it will fall back to an IP address automatically assigned.

The IP address information can be viewed by opening the virtual appliance console once it has booted, as shown below.

The screen shot above shows the 10.10.10.2 IP address as the fallback address. The other address shown was allocated

by DHCP and should be used for all communication.

If DHCP cannot be used, a static IP address can be configured as described below.

Configure static IP

To configure a static IP address, the Management REST API for the virtual appliance is used. The following information is

required:

15

Method: POST

URL:

http://${APPLIANCE_HOST}:8080/v1/management/host/setipaddress

Body Format: JSON

Body: address, netmask, gateway, nameservers

Where ${APPLIANCE_HOST} is the hostname or IP address of your Real-time Virtual Appliance.

The example below shows use of Postman (available for free from the Chrome web store) to POST new IP settings.

You can optionally specify a list of nameservers to use (if none are specified then, 8.8.8.8 is used), for example this time

using curl from the command-line to make the POST request:

curl -L -X POST 'http://${APPLIANCE_HOST}:8080/v1/management/host/setipaddress' \

 -H 'Accept: application/json' \

 -H 'Content-Type: application/json' \

 -d '@network-config.json'

In this example, a local file network-config.json is used for the JSON configuration:

{

 "address": "192.168.128.96",

 "netmask": "255.255.255.0",

 "gateway": "192.168.4.1",

 "nameservers": ["208.67.222.222", "208.67.220.220"]

}

NOTE: once the POST is sent, the virtual appliance will automatically reboot. Check the console to verify the new IP

address has been applied.

Configure DHCP IP

To configure a dynamic IP address using DHCP, the admin REST API is used as follows:

https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://curl.haxx.se/docs/manpage.html

16

Method: POST

URL:

http://${APPLIANCE_HOST}:8080/v1/management/host/setdhcp

Body format: JSON

The example below shows how to use Postman to POST to the REST API in order to configure a DHCP address.

curl -L -X POST 'http://${APPLIANCE_HOST}:8080/v1/management/host/setdhcp' \

 -H 'Accept: application/json'

NOTE: once submitted, the virtual appliance will automatically reboot. Check the console to verify the new IP address

has taken affect.

Licensing
The Speechmatics Real-time Virtual Appliance uses a cloud-based licensing mechanism, meaning that the under normal

circumstances the appliance must be connected to the Internet, at least when the license is activated.

Note: For deployments where this is not possible, and where an offline license has been provided, it is possible to

license the appliance without an Internet connection. Consult the Admin Guide for details on how to apply an offline

license.

Your appliance must have been activated with a valid license before the Speech API can be used. Use of the

Management API does not require a license. Please contact Speechmatics support support@speechmatics.com if you do

not have a license.

Applying License

To apply the license that you have received from Speechmatics you use the Management API. The following information

will be required:

Method: POST

URL:

http://${APPLIANCE_HOST}:8080/v1/management/license

Body format: JSON

Body: license, username, email_address, company_name

Where ${LICENSE_CODE} is the license code you've been provided with. The other fields (username, email_address and

company_name) are optional, but we recommend that you fill them in with your details to help with support.

Note: Make sure when applying the license, that all the appliance services are running and that you have a route to the

Internet; otherwise the activation will fail.

The example below shows how to use Postman to POST to the REST API to apply (activate) the license.

mailto:support@speechmatics.com
https://www.getpostman.com/

17

Or, the same request from the command-line:

curl -L -X POST "http://${APPLIANCE_HOST}:8080/v1/management/license" \

 -H 'Accept: application/json' \

 -H 'Content-Type: application/json' \

 -d '{

 "license": "494853679762904933",

 "username": "Fiona Kelly",

 "email_address": "fjk@example.com",

 "company_name": "Aflexliv Pty"

 }' \

 | jq

The response should indicate that the licensed status is true. The licensing activation requires a connection to the

Internet (using port 80). If you are behind a corporate firewall that does not allow a direct connection to the Internet then

you can configure the appliance to use a network proxy or relay server to allow you to license the appliance. Full

instructions on how to set this up are to be found later on in this guide.

Verify and Go (Real-Time)
This section explains how to verify the correct operation of the Real-Time Virtual Appliance using the Websockets

Speech API.

The first time that the Real-Time Virtual Appliance is started up there are no persistent workers configured. This means

that workers will be spun up dynamically to the limit of the maxworkers limit. If you want to pre-allocate workers so that

they are ready for incoming streams, you can select a language to configure as a persistent worker. You can find out the

list of available languages on your appliance using the REST API:

Method: GET

URL:

http://${APPLIANCE_HOST}:8080/v1/management/persistentworkers

This will return as JSON output the list of persistent workers (by language code) and the number of instances; initially

they will all be zero. The list of supported languages are available on the Speechmatics website

https://www.speechmatics.com/language-support/, or you can consult the release notes.

Use the Management API to set persistent_workers with a count of at least 1 and the language code to use. For

example, to set French as a persistent worker, use the following method:

Method: POST

URL:

https://www.speechmatics.com/language-support/

18

http://${APPLIANCE_HOST}:8080/v1/management/persistentworkers

Body Format: JSON

Body: { "persistent_workers": [{ "count": "1", "id": "fr" }] }

This will return an updated list of persistent workers with entry for French (fr) updated to 1.

curl -s -L -X POST "http://${APPLIANCE_HOST}:8080/v1/management/persistentworkers" \

 -H 'Accept: application/json' \

 -d '{ "persistent_workers":

 [{ "count": "1", "id": "fr" }]

 }'

Verify the service

Check that all the Speechmatics services within the appliance are up and running before trying to open a WebSockets

connection. The Management API can be used for this.

curl -s -L -X GET "http://${APPLIANCE_HOST}:8080/v1/management/services" \

 -H 'Accept: application/json'

Go!

The Speechmatics Real-time Virtual Appliance is now ready to use.

The Speech API Guide provides details of how to use WebSockets to stream audio to the Speechmatics engine in real

time and obtain transcripts. For all WebSocket communication, ensure that the IP address identified in the steps above is

used.

SSL Configuration
When the appliance is imported it contains a default self-signed certificate, so you can use HTTPS to access the

appliance via the Management, Monitoring and Speech APIs. However, we recommend replacing this default SSL

certificate with your own certificate, signed by your organisation or a trusted third-party certificate authority (CA).

Default behaviour

By default, our appliances allow connections over HTTP. The services on the appliance expose several ports for HTTP

access, such as 8080 for the management API and 3000 for the monitoring API.

Since version 3.4.0 of the appliances, we also support HTTPS access to these services over port 443. To use HTTPS

simply change the protocol used for API calls from 'http' to 'https' , and remove the port from the URL. If you are

copying the examples from this document you can set the $APPLIANCE_HOST environment variable like this: export

APPLIANCE_HOST=localhost .

Management API Examples

curl -L -X GET "http://${APPLIANCE_HOST}:8080/v1/management/services" \

 -H 'Accept: application/json'

To modify this to use a secure API call, change http:// to https:// and remove the port number :8080 from the

URL:

curl -L -X GET "https://${APPLIANCE_HOST}/v1/management/services" \

 -H 'Accept: application/json'

Note: If you are using a self-signed certificate (your own, or the Speechmatics certificate that is used by default), then

you will see a warning like this when using the above curl command:

19

curl: (60) SSL certificate problem: self signed certificate

Warning: The default SSL certificate on the appliance is a self-signed certificate created by Speechmatics, which is not

signed by any certificate authority. Your HTTP client or web browser may warn that this is insecure. This warning can be

suppressed, for example with cURL by adding the --insecure flag, however customers who are serious about security

should not be using the self-signed certificate. We recommend uploading your own SSL certificate to the appliance.

Instructions for doing this can be found below.

Important: We have added --insecure to some of them cURL examples in this document so that the command trusts

the self signed certificate. You won't need this option once you've uploaded your own certificate and configured your

own system to trust it.

Monitoring API Example

With access to the Monitoring API (available on port 3000 if you are using HTTP) you will need to prefix the endpoint with

/monitor . For example:

curl --insecure -L -X GET "https://${APPLIANCE_HOST}/monitor/api/2/mem"

Speech API Example

Access to the REST Speech API (available on port 8082 using HTTP), is also possible via HTTPS:

curl --insecure -L -X GET "https://${APPLIANCE_HOST}/v1.0/user/1/jobs/"

Using your own SSL certificate and private key

To use your own SSL certificate you'll need to upload your certificate file as well as the associated private key file.

The private key file normally has a '.key' extension and should look similar to the example below.

-----BEGIN RSA PRIVATE KEY-----

xqgLwi4gJ9+9Qkavpk3WpPFTTYUfVrCJNviKEn5wA1tuutqLQkRTcxJtrEk8trKI

fCxeZo35yVhYmDGUIuAdAcPRTPj0XZkXQRhkITmD8TYMc/sVlJpFr+TAssGzute8

... 21 lines redacted ...

+bLv4aqI9tZrwpyeziaOuyQRhYodpAjhCyCFMkJjY59BKv/cqMHx8FPDQmaZ9Xs0

SmE9JAknDgF5yLHm1Q6WZ1/L/M4SkgIqEglF7ifLd5M3wskpmHia6/f8Fa2KwbBJ

-----END RSA PRIVATE KEY-----

Note: We do not currently support encrypted/password protected private key files.

The certificate file should be PEM encoded and normally has a '.crt' or '.pem' extension. It should look similar to

this:

-----BEGIN CERTIFICATE-----

MIIGuzCCBaOgAwIBAgIIIHlfyznYUA8wDQYJKoZIhvcNAQELBQAwgbQxCzAJBgNV

BAYTAlVTMRAwDgYDVQQIEwdBcml6b25hMRMwEQYDVQQHEwpTY290dHNkYWxlMRow

... 32 lines redacted ...

P4LMbjCA4mqQvlipibeSAN1E4OrFL47zLcy+H9M0+Rw2CUiwL8QZFq+TAiIZ34tC

UVCh52xpB9/BhO++QbGd1zObqDhcGEg8pJpJIycej9t4GN1eqNSudn0ibsQWev8=

-----END CERTIFICATE-----

Both files should be in PKCS8 format. If you have to upload a certificate chain, then the file you upload should contain

the individual certificates concatenated, with your organisation's certificate first.

Uploading the certificate and key to the appliance

To upload your own certificate to the appliance you will need to make a POST request to the

/v1/security/sslcertificate endpoint. This can be done using an HTTP client on the command line or with the

https://en.wikipedia.org/wiki/PKCS_8

20

management interface in a browser.

With the example shown here set APPLIANCE_HOST as appropriate (e.g. export APPLIANCE_HOST=localhost if your

appliance is running locally):

curl --insecure -X POST "https://${APPLIANCE_HOST}/v1/security/sslcertificate" \

 -F "keyfile=@appliance.key" -F "certfile=@appliance.crt"

Warning: Do not upload these files over HTTP, or you risk leaking the private key for your certificate.

If the upload succeeds then you should receive an HTTP 200 response with a success message:

{

 "success": true,

 "message": "certificate and private_key applied successfully"

}

Be aware that setting a new certificate will cause the web server in the appliance to restart which can take around five

seconds. During this period, requests will still be served, however the old certificate will be used. Existing connections

such as job uploads or WebSocket streams will not be interrupted.

You can check the certificate on the appliance by using the openssl tool:

$ openssl s_client -connect ${APPLIANCE_HOST}:443

Disabling HTTP access

If desired, HTTP access may be disabled, which will cause any requests to the appliance using HTTP to fail. To do this,

make a POST request to the /v1/security/insecureports endpoint, with a JSON body containing

{"enable_insecure_ports": false} :

curl -X POST "https://${APPLIANCE_HOST}/v1/security/insecureports" \

 -H "Content-Type: application/json" \

 -d "{ \"enable_insecure_ports\": false}"

If the request succeeded then you should receive an HTTP 200 response. The web server in the appliance will take

around five seconds to restart. Now, when attempting to make an HTTP request to the appliance you should see that no

response is returned:

curl -X GET "http://${APPLIANCE_HOST}:8080/v1/management/services"

curl: (52) Empty reply from server

Enable Basic Authentication for Admin

An admin password can be set to enable HTTP basic authentication for an admin user. Note that authentication is only

enforced when using HTTPS. If you set an admin password then you must also disable HTTP access as described in

the previous section. If you do not do this then it will be possible for someone else to override the admin password by

making an unauthorized HTTP request.

To set a password, make a POST request to the /v1/security/adminpassword endpoint. The username for basic auth

is always admin .

curl -X POST "https://${APPLIANCE_HOST}/v1/security/adminpassword" \

 -H "Content-Type: application/json" \

 -d "{ \"password\": \"example\" }"

{"success":true,"message":"nginx_restart"}

https://en.wikipedia.org/wiki/Basic_access_authentication

21

If this request was successful then you should receive an HTTP 200 response with a success message. The web server

in the appliance will take around five seconds to restart. All requests to HTTPS endpoints will now require a valid

Authorization header as specified by RFC7617. Unauthenticated requests will fail, for example:

$ curl -X GET "https://${APPLIANCE_HOST}/v1/management/services"

<html>

<head><title>401 Authorization Required</title></head>

<body>

<center><h1>401 Authorization Required</h1></center>

<hr><center>nginx/1.17.6</center>

</body>

</html>

Authenticated requests should succeed. If you are using curl then the --user flag can be used to set the username and

password (separated with a colon). If you're using the Management UI in a browser than a prompt will appear for a

username and password.

$ curl --insecure -X GET --user "admin:example"

"https://${APPLIANCE_HOST}/v1/management/services"

If you have disabled HTTP access then it should now be impossible to make requests to the appliance without knowing

the admin password. Please be aware that plain HTTP access does not require the admin password, and should be

disabled if you are using a password.

FAQs

How do I reset the SSL settings?

If you have made a mistake in your SSL configuration, it is possible to reset the appliance to it's default settings. This will

return it to using the self-signed certificate from Speechmatics, and will delete any configured admin password. If you

have disabled HTTP access then you need to know the existing admin password in order to do this.

To do this, make a DELETE request to the /v1/security/reset endpoint:

$ curl -X DELETE --user "admin:$PWD" "https://${APPLIANCE_HOST}/v1/security/reset"

{"success": true, "message": "nginx_restart"}

What if I forget the admin password?

If you have forgotten the admin password you have set, and have disabled HTTP access to the appliance then it will not

be possible to interact with the appliance over HTTP/HTTPS. Fortunately there is a way to reset the SSL configuration if

you have direct access to the appliance's console (through the hypervisor that you use).

See the 'Administration -> Services -> Console for Advanced Troubleshooting' section for instructions on how to access

the console.

Once you have opened the console open the 'Security' menu and select the 'Reset security' option to reset all security

settings. It is also possible to toggle HTTP access and set the admin password using this interface.

https://tools.ietf.org/html/rfc7617

22

What versions of SSL/TLS do you support?

We support TLS 1.2 and TLS 1.3. We do not support earlier versions of TLS/SSL as these are considered weak. In general

we would recommend you keep your client frameworks up to date with the latest security patches and try to use the

strictest TLS configuration that you can.

What cipher suites do you support?

For TLS 1.3 we support the following cipher suites that are considered strong (in server-preferred order):

TLS_AES_256_GCM_SHA384

TLS_CHACHA20_POLY1305_SHA256

TLS_AES_128_GCM_SHA256

For TLS 1.2 we support the following cipher suites that are considered strong (in server-preferred order):

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256

Other cipher suites are available for TLS 1.2, but they are considered to be weak. Our recommendation is that you select

one of the above cipher suites.

Networking

Network Requirements

When the virtual appliance is started for the first time it will automatically try to acquire an IP address using DHCP. If it is

able to successfully acquire an address, it will be displayed on the VM console along with the fallback IP address:

10.10.10.2. However, if there is no DHCP server available on the network only the 10.10.10.2 IP address will be displayed.

The 10.10.10.2 address is a fallback address enabling communication with the virtual appliance when no DHCP services

are available. This address should be used temporarily to set a static IP address if no DHCP is available. To do this,

ensure that the client connecting to this address is on the same network by assigning it a suitable IP address (e.g.

10.10.10.3/24).

Note: The appliance uses three internal networks:

docker_gwbridge - 10.254.0.0/22

ingress - 10.254.4.0/25

23

docker0 - 10.254.4.128/25

You need to ensure that any network you use does not have an IP address conflict with anything in the range: 10.254.0.0

to 10.254.4.255.

Configure Static IP

The virtual appliance can be configured to work on any IP network.

Setting a static IP requires three parameters: the IP address, subnet mask and default gateway. You set the static IP

address like this:

curl -L -X POST "http://${APPLIANCE_HOST}:8080/v1/management/host/setipaddress" \

 -H 'Accept: application/json' \

 -H 'Content-Type: application/json' \

 -d '{

 "address": "192.168.128.160",

 "netmask": "255.255.255.0",

 "gateway": "192.168.128.1"

 }' \

 | jq

Note: Once the POST is sent, the virtual appliance will automatically reboot. Check the console (or make an API call) to

verify the new IP address has taken affect.

Configure DHCP

You can also change back to using DHCP. Before undertaking this, ensure the network the virtual appliance is on has

DHCP enabled.

curl -L -X POST "http://${APPLIANCE_HOST}:8080/v1/management/host/setdhcp" \

 -H 'Accept: application/json'

NOTE: once submitted, the virtual appliance will automatically reboot. Check the console to verify the new IP address

has taken affect.

Firewall Ports

There are several firewall rules that may need to be enabled to ensure the communication can be made to the virtual

appliance:

8080/TCP - Used for the Management API to manage the virtual appliance

3000/TCP - Monitoring API

8082/TCP - Speech API for submitting jobs (Batch Appliance only)

9000/TCP - WebSockets Speech API for submitting jobs (Realtime Appliance only)

443/TCP - HTTPS access to the above APIs

Using Proxies

If the network that you are deploying your appliance into does not have a direct route to the Internet, you may need to

use a proxy server in order to talk to the cloud-based license service. See the relevant section in Licensing (below) for

details on how to set this up.

Virtual Appliance Scaling

Real-Time Virtual Appliance Scaling

24

This section explains how to scale the Real-Time Virtual Appliance, and gives advice on how to make sure you've

allocated enough resources for your workload.

Worker Limits

The number of concurrent workers can be restricted using the Management API. This can be used to ensure that the

system resources do not get exhausted by clients starting more sessions than expected. The maximum number of

concurrent workers is set for the entire system, irrespective of which language packs are being used. The default number

of maximum concurrent workers is 1.

View Maximum Workers

Use a GET request to the maxworkers endpoint to view the maximum number of workers:

curl -L -X GET 'http://${APPLIANCE_HOST}:8080/v1/management/maxworkers' \

 -H 'Accept: application/json' \

 | jq

This shows the maximum number of workers that can run concurrently on the appliance. If more sessions are opened by

clients using the Speech API then you will receive the job error: No worker can be scheduled because the service

is at capacity .

Setting Maximum Workers

Before changing the maximum number of concurrent workers for real-time transcription, it is important that the virtual

appliance has enough system resources (CPU and RAM) to support the new requirement (see the Real-time Virtual

Appliance system requirements). This example shows how to set the maximum number of concurrent workers to 5:

curl -L -X POST 'http://${APPLIANCE_HOST}:8080/v1/management/maxworkers' \

 -H 'Accept: application/json' \

 -H 'Content-Type: application/json' \

 -d '{ "count": "5" }'

As a rule of thumb, each concurrent worker will require 1 vCPU and up to 2GB RAM.

Batch Virtual Appliance Scaling

This section explains how to scale the Batch Virtual Appliance, and gives advice on how to make sure you've allocated

enough resources for your workload.

Worker Limits

The number of concurrent workers (jobs) can be restricted using the Management API. This can be used to ensure that

the system resources do not get exhausted by clients starting more transcriptions than expected. The maximum number

of concurrent workers is set for the entire system, irrespective of which language packs are being used. The default

number of maximum concurrent workers is 1.

View Maximum Workers

Use a GET request to the maxworkers endpoint to view the maximum number of workers:

curl -L -X GET 'http://${APPLIANCE_HOST}:8080/v1/management/maxworkers' \

 -H 'Accept: application/json' \

 | jq

The response will indicate the maximum number of workers that can run concurrently on the appliance. If more jobs are

submitted by clients using the Speech API then these will be queued up and processed once there is spare capacity on

the appliance.

Setting Maximum Workers

25

Before changing the maximum number of concurrent workers, it is important that the virtual appliance has enough

system resources (CPU and RAM) to support the new requirement (see the Batch Virtual Appliance system

requirements).

This example shows how to set the maximum number of concurrent workers to 5:

curl -L -X POST 'http://${APPLIANCE_HOST}:8080/v1/management/maxworkers' \

 -H 'Accept: application/json' \

 -H 'Content-Type: application/json' \

 -d'{ "count": "5" }'

As a rule of thumb, each concurrent worker will require 1 vCPU and up to 5GB of RAM (depending on the quality of the

audio).

If the number of jobs submitted exceeds the maximum number of concurrent workers then jobs will start to be queued,

and the real-time factor (RTF) will increase, meaning you will wait longer for your transcripts to be made available.

Monitoring
Appliance resources can be monitored at a system-wide level. Exhaustion of any of the resources can have a negative

impact on the speed of the transcription.

The following resources that can be monitored:

Resource ID (rID) Description

cpu Provides the CPU usage across all the vCPU assigned

mem Provides the total RAM usage of the appliance

Here is an example GET request for the mem (RAM) resource:

curl -L -X GET "http://${APPLIANCE_HOST}:8080/v1/management/resource/mem" \

 -H 'Accept: application/json' \

 | jq

Here is an example response:

{

 "rId": "mem",

 "percentage": 10.9,

 "value": 0,

 "intValue": 0

}

For advanced monitoring, a utility called Glances is available that runs on TCP port 3000. It allows real-time resource

stats to be monitored on the Real-time Virtual Appliance. The easiest way to access this is via a web browser using the

link http://${APPLIANCE_HOST}:3000/ in the address bar.

https://nicolargo.github.io/glances/

26

It is also possible to access the Glances API using XML-RPC or HTTP REST (for JSON output), for example:

curl -L -X GET "http://${APPLIANCE_HOST}:3000/api/2/mem/percent" \

 -H 'Accept: application/json' \

 | jq

For more information on the HTTP REST interface, consult the Glances documentation.

Services
The virtual appliance has internal services that are required for operation.

There are system-wide services, and services specific to transcription workers for a given language.

For the Batch Virtual Appliance, this table lists the services:

Service Name (Begins with) Description Required Status

batch_ffmpeg... Conversion of audio Running

batch_rpc_gateway... RPC endpoint Running

batch_license... Licensing service Running

batch_linkerd... Internal Networking Running

batch_notifier... Callback function Running

batch_management... Management functions Running

batch_rabbitmq... Job Queue Running

batch_monitoring_ui... Monitoring Web GUI Running

batch_cron... Completed job clean-up Running

batch_v1compatibility... V1 REST API Running

batch-jobs... Used to perform ASR and transcription Running

batch_nginxlb... HTTP gateway Running

The service will always have a current state, these states include:

Service Status Description

running Service has started and is running

https://github.com/nicolargo/glances/wiki/The-Glances-RESTFULL-JSON-API

27

created Service is in the process of starting

exited Service has stopped and is no longer running

Service status

This can be used to ensure all services have the required status to operate (see table above). Example: GET to list

services and corresponding status:

curl -L -X GET 'http://${APPLIANCE_HOST}:8080/v1/management/services' \

 -H 'Accept: application/json' \

 | jq

If the appliance has been licensed then you will see a return like this (for the Batch Virtual Appliance):

{

 "service_status": [

 {

 "service": "batch_management.1.iu9c86o1weubdmi99wddlcklr",

 "status": "running"

 },

 {

 "service": "batch_ffmpeg.1.jre8d5lempzmsqfki9o871a62",

 "status": "running"

 },

 {

 "service": "batch_notifier.1.idqxysv0srzeg2vkkorh1zjfh",

 "status": "running"

 },

 {

 "service": "batch_linkerd.1.af4t03setx3m64s15s9yawysl",

 "status": "running"

 },

 {

 "service": "batch_batch-cron.1.y5ql8ryyqlxwlxy84q9q3lfrn",

 "status": "running"

 },

 {

 "service": "batch_license.1.7ecytnlzd6hso3jxauvbyvfyi",

 "status": "running"

 },

 {

 "service": "batch_rabbitmq.1.l8ny2q6b2xhz0yr5bxwodbtog",

 "status": "running"

 },

 {

 "service": "batch_monitoring_ui.1.v180r4tq7dlcbfhc3vxyukpdo",

 "status": "running"

 },

 {

 "service": "batch_rpc_gateway.1.fb3ryh2a4d41sy628bhiogyx4",

 "status": "running"

 },

 {

 "service": "batch_postgres.1.wfy284tvznpnmgi22xaw11b55",

 "status": "running"

 },

 {

28

 "service": "batch_jobs.1.z4vftf8vv42uzmxd4ra3235ao",

 "status": "running"

 },

 {

 "service": "batch_v1compatibility.1.j5rvj3wpqwdfnl848ci42iix2",

 "status": "running"

 }

]

}

Note: After a service is restarted it will have a random string identifier post fixed to its name.

Service restart

If required for troubleshooting you may need to restart all the services. During the restart, all transcription will stop. The

following command performs a service restart:

$ curl -X DELETE 'http://<APPLIANCE HOST>:8080/v1/management/services' \

 -H 'Accept: application/json'

Access Logs

The individual services on the system provide log files that can be collected to help with troubleshooting. The service

name will need to be provided when retrieving logs. See above for instructions on how to view the names of the running

services

The following parameters are available when accessing logs:

Name Description Required Status

name Name of the service to collect the logs for Required

count Number of log lines wanted, defaults to 100; if all lines are to be returned set to -1 Optional

Example: GET to retrieve logs for batch_monitoring_ui service:

curl -L -X GET

'http://${APPLIANCE_HOST}:8080/v1/management/logs/batch_monitoring_ui.1.mtvn0r47qb7durnl0fmuimsc0'

 \

 -H 'Accept: application/json' \

 | jq -r '.log_lines'

If you want to download all the logs (in order to provide information for a support ticket for instance) as a ZIP file, then it

is possible to do this using the following command:

curl -L -X GET 'http://${APPLIANCE_HOST}:8080/v1/management/logs/zip' \

 -H 'Accept: application/json' \

 -o ./speechmatics.zip

It is also possible to do this directly from the Swagger UI by entering in the following URL to your browser:

http://${APPLIANCE_HOST}:8080/docs/#/Management/ZipLogs, and then clicking on the download link when the ZIP file

is ready.

29

System restart

If the virtual appliance becomes unresponsive, there might be a need to restart it. If this is the case, it's recommended

that the system is restarted through the management API, like this:

curl -L -X DELETE 'http://${APPLIANCE_HOST}:8080/v1/management/reboot'

If the Management API is not available, then you should reboot the appliance from the hypervisor console. For further

information on how to restart the virtual machine via the console, please follow the manufacturers advice.

Troubleshooting

There may be times unexpected behavior is observed with the Real-time Virtual Appliance. If this is the case the

following should be performed/checked:

Check the license is valid (see licensing)

Check the worker services are running

Check the resources (CPU, memory & disk) to ensure they are not exhausted

Restart all the services

Restart the virtual appliance

Collect logs and contact Speechmatics support: support@speechmatics.com.

Transcription job failure

If your transcription job fails with an error job status, more information can be found by looking at the logs from the

jobs container (using the Management API, as previously described). Search the logs for the job id corresponding with

your failure. If you see a SoftTimeLimitExceeded exception, this indicates that the job took longer than anticipated

and as such was terminated. This is typically caused by poor VM performance, in particular slow disk IO operations

mailto:support@speechmatics.com

30

(IOPS). If issues persist it may be necessary to improve the disk IO performance on the underlying host, or you may need

to increase the RAM available to the VM such that memory caches can be taken advantage of. Please consult the section

above on Host requirements, and the optimization advice specific to your hypervisor to ensure that you are not over-

committing your compute resources.

Illegal instruction errors

If jobs fail repeatedly and you see Illegal instruction errors in the log information for these jobs then it is likely

that the host hardware you are running on does not support AVX. The host machine requirements for the Real-time

Virtual Appliance must meet the following minimum specification: Intel® Xeon® CPU E5-2630 v4 (Sandy Bridge) 2.20GHz

(or equivalent). This is important because these chipsets (and later ones) support Advanced Vector Extensions (AVX).

The machine learning algorithms used by Speechmatics ASR require the performance optimizations that AVX provides.

You can check this by looking in the management log when the appliance starts up. If you see a message like this:

2019-03-26 16:53:07,136 sm_management.app ERROR Processor not AVX capable. Tensorflow

language models cannot run.

Then it means that your host's CPU does not support AVX, or that your hypervisor does not have AVX support.

A console is available to help with advanced troubleshooting in the event that the Management API is unavailable. It is

described in the next section.

Console for Advanced Troubleshooting

In the event that the Management API is unavailable (it is unresponsive, or there is no network connectivity) you can use

the console to restore network connectivity, restart the appliance, or view information about services. To use this you

need to use your hypervisor's GUI to access the logon screen for the appliance.

31

From this screen use the CTRL+ALT+F5 key combination to get to the console. Once you are in the console you have the

following menu options available:

License

Networking

Reboot

Services

Shutdown

Tools

Workers

32

The home screen shows high-level information about the appliance: IP addressing, software version and license status.

In the System status panel the API responding indicator shows the state of the Management API. Network status

shows the IP address the appliance is currently configured with, and ASR status shows the license state and available

storage space on the appliance.

In the event that you need to provide information to Speechmatics support you may be asked to connect to the console

and provide this information. This section provides some tips on how to use the console to perform basic troubleshooting

yourself.

Note: We recommend that you use the Management API for most troubleshooting tasks as it is easier to use. The

console can be used in the event that the Management API is unavailable, but it does not provide all the features of the

Management API.

License

The Licensing Troubleshooting section provides detailed instructions on how to use the Management API to resolve

common licensing issues. If you cannot use the Management API then you can still use console to check the license

status and perform basic licensing steps.

Networking

You can use the networking option to configure a static IP address, or use DHCP.

Reboot and Shutdown

Reboot and Shutdown options exist to allow you to restart or shutdown the appliance from the console. You will be asked

to select OK to confirm.

Security

From this menu you can manage the security settings on the appliance, such as disabling HTTP access, changing the

admin password for HTTP basic authentication, and resetting the SSL configuration.

Services

http://localhost:61835/licensing-admin.md#licensing-troubleshooting

33

From this menu you can access the list of services that are running on the appliance. Selecting a service shows the log

entries for that service.

Tools

This menu allows you to access a number of useful Unix utilities that can be used for advanced troubleshooting. In order

to help progress a support ticket you may be asked to provide the output (ie. a screenshot) from running one of these

commands.

Workers

This allows you to view and change the maximum number of workers allowed to run concurrently.

Security
The appliance is designed to be installed within your own security perimeter. It has its own firewall installed to only allow

ingress to ports that are required for its management, monitoring and Speech APIs.

Overview

The appliance uses a microservices architecture running on a customized Ubuntu machine. AppArmor default security

policies are used to protect the OS and running applications on the appliance.

Data on the appliance (including audio and video data that is submitted via the Speech API, logs, and output transcripts)

are encrypted on disk.

Ports and Protocols

There are several firewall rules that may need to be enabled to ensure the communication can be made to the virtual

appliance. If you setup HTTPS as described in the 'SSL Configuration' section of these docs then you only need to

expose port 443.

Port/Protocol Description

8080/TCP Used for the Management API to manage the virtual appliance

3000/TCP Monitoring (Glances)

8082/TCP REST Speech API for batch ASR

9000/TCP Websocket Speech API for real-time ASR

443/TCP Used for HTTPS communication with all of the above services

Custom Dictionary Cache

[NOTE] Cache availability

The custom dictionary cache is only available in the Real-Time Virtual Appliance.

When the Real-Time Virtual Appliance is started for the first time the cache will be empty. The administration allows to

retrieve cache usage data and to purge the cache contents.

View Cache Usage

Cache usage reports the total amount of bytes and the used amount of bytes in the cache.

In order to retrieve usage stats, use a GET request to the /v1/management/cache endpoint:

https://gitlab.com/apparmor/apparmor/wikis/home/

34

curl -L -X GET http://${APPLIANCE_HOST}:8080/v1/management/cache \

-H 'Accept: application/json' \

| jq

Here is an example response:

{

 "total_bytes": "105188352",

 "used_bytes": "192512"

}

Purge Cache Contents

It is possible to remove all contents in the cache.

In order to purge the cache contents, use a DELETE request to the /v1/management/cache endpoint:

curl -L -X DELETE http://${APPLIANCE_HOST}:8080/v1/management/cache \

-H 'Accept: application/json' \

| jq

Here is an example response:

{

 "confirmation": "Custom dictionary cache purged successfully",

 "usage": {

 "total_bytes": "105188352",

 "used_bytes": "14336"

 }

}

Introduction

Overview

The WebSocket Speech API allows communication from a client application over a WebSocket connection to the

Speechmatics ASR engine (as implemented in the Real-Time Virtual Appliance or the standalone Real-Time Container).

This connection provides the ability to convert a stream of audio into a transcript providing the words and timing

information as the live audio is processed.

The WebSocket API can be used directly as described in this document; client libraries and frameworks that support

WebSockets are available for most popular programming languages. Speechmatics provides reference Python libraries

that can be used to wrap the WebSocket interface, and provide the ability to connect directly to a microphone or RTSP

feed.

Terms

For the purposes of this guide the following terms are used.

Term Description

Client
An application connecting to the Real-time Virtual Appliance using the Speech API. The client will

provide audio containing speech, and process the transcripts received as a result.

Server
The Real-Time Container or Applaince providing the ASR engine which processes human speech

and returns transcripts in real-time.

Management The REST API that allows administrators to manage the virtual appliance over port 8080. To access

35

API the documentation you can use the following URI: http://${APPLIANCE_HOST}:8080/help/, where

${APPLIANCE_HOST} is the IP address or hostname of your appliance.

Speech API

The WebSocket API that allows users to submit ASR jobs over server port 9000. The endpoint

wss://${APPLIANCE_HOST}:9000/v2 is used for the Speech API. This is the API that is described in this

document.

Real-Time

Container
A Docker container that provides real-time ASR transcription.

Real-Time

Virtual

Appliance

An appliance (VM) that provides real-time ASR transcription.

Input Formats

A wide variety of input sources are supported, including:

Raw audio (microphone)

File (.wav, .mp3 and .mp4 are tested)

RTMP, RTSP or HLS stream

A Python client library is supplied that shows how to get data from some of these sources.

If you attempt to use an audio file format that is not supported, then you will see the following error message:

Error / job_error: An internal error happened while processing your file. Please check that your

audio format is supported.

Transcript Outputs

The output format from the Speech API is JSON. It is described in detail in the API Reference. There are two types of

transcript that are provided: final transcripts and partial transcripts. Which one you decide to consume will depend on

your use case, and your latency and accuracy requirements.

Final transcripts

Final transcripts are sentences or phrases that are provided based on the Speechmatics ASR engine automatically

determining the best point at which to provide the transcript to the client. These transcripts occur at irregular intervals.

Once output, these transcripts are considered final, they will not be updated after output. The timing of the output is

determined by Speechmatics based on the ASR algorithm. This is affected by pauses in speech and other parameters

resulting in a latency between audio input and output of up to 10 seconds. This 10 second default can be changed with

the max_delay property in transcription_config when starting the recognition session. Final transcripts provide

the most accurate transcription.

Partial transcripts

A partial transcript is a transcript that can be updated at a later point in time. It is believed to be correct at the time of

output, but once further audio data is available, the Speechmatics ASR engine may use the additional context that is

available to update parts of the transcript that have already been output. These transcripts are output as soon as any

transcript is available, regardless of accuracy, and are therefore available at very low latency. These are the fastest way

to consume transcripts but at the cost of needing to accept updates at a later point. Partial transcripts provide latency

values between audio input and initial output of less than 1 second. This is the least accurate transcription method, but

can be used in conjunction with the final transcripts to enable fast display of the transcript, adjusting over time. Partial

transcripts must be explicitly enabled (using the enable_partials setting) in the config for the session, otherwise only

final transcripts will be output.

Advanced Punctuation

http://localhost:61835/en/real-time-appliance/api-v2/speech-api-guide/v3.5.0

36

Some language models support advanced punctuation. This uses machine learning techniques to add more naturalistic

punctuation and make the transcript more readable. See the Release Notes for details on what languages currently

support advanced punctuation.

The WebSocket Protocol

WebSockets are used to provide a two-way transport layer between your client and the Real-Time Appliance or

Container, enabling use with most modern web-browsers, and programming languages. See RFC 6455 for the detailed

specification of the WebSocket protocol.

The wire protocol used with the WebSocket consists mostly of packets of stringified JSON objects which comprise a

message name, plus other fields that are message dependant. The only exception is that a binary message is used for

transmitting the audio.

You can develop your real time client using any programming language that supports WebSockets. This document

provides a list of the messages that are required for the client and server communication. Some of the messages are

required to be sent in a particular order (outlined below) whilst others are optional. There are some examples provided at

the end of this document on how to access the Speech API using JavaScript.

When implementing your own websocket client, we recommend using a ping/pong timeout of 60 seconds. More details

about ping/pong messages can be found in the WebSocket RFC here: https://tools.ietf.org/html/rfc6455#page-37.

For a working Python example, please refer to our reference Python client implementations.

If you are using the Real-Time Virtual Appliance you can use the smwebsocket-py library, which is available for

download. Please contact support@speechmatics.com for details of how to download this Python client.

If you are using the standalone Real-Time Container you can use the speechmatics-python library. Please contact

support@speechmatics.com for details of how to download this Python client.

Realtime API
This page specifies the Realtime API at its current state. The basic elements in the communication are the following:

Client - An application connecting to the API, providing the audio and processing the transcripts received from

the Server.

Server (also called API) - An entry point of the API, allows external connections and provides the transcripts

back.

Worker - An internal speech recognizer. This is an internal entity that actually runs the heavy speech

recognition.

Client ↔ API endpoint

The communication is done using WebSockets, which are implemented in most of the modern web-browsers, as well as

in many common programming languages (namely C++ and Python, for instance using http://autobahn.ws/).

Messages

Each message that the Server accepts is a stringified JSON object with the following fields:

message (String): The name of the message we are sending. Any other fields depend on the value of the

message and are described below.

The messages sent by the Server to a Client are stringified JSON objects as well.

The only exception is a binary message sent from the Client to the Server containing a chunk of audio which will be

referred to as AddAudio .

The following values of the message field are supported:

StartRecognition

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455#page-37
mailto:support@speechmatics.com
mailto:support@speechmatics.com
http://autobahn.ws/

37

Initiates recognition, based on details provided in the following fields:

message: "StartRecognition"

audio_format (Object:AudioType): Required. Audio stream type you are going to send: see Supported audio

types.

transcription_config (Object:TranscriptionConfig): Required. Set up configuration values for this

recognition session, see Transcription config.

A StartRecognition message must be sent exactly once after the WebSocket connection is opened. The client must

wait for a RecognitionStarted message before sending any audio.

In case of success, a message with the following format is sent as a response:

message: "RecognitionStarted"

id (String): Required. A randomly-generated GUID which acts as an identifier for the session. e.g. "807670e9-

14af-4fa2-9e8f-5d525c22156e".

In case of failure, an error message is sent, with type being one of the following: invalid_model,

invalid_audio_type, not_authorised, insufficient_funds, not_allowed, job_error

An example of the StartRecognition message:

{

 "message": "StartRecognition",

 "audio_format": {

 "type": "raw",

 "encoding": "pcm_f32le",

 "sample_rate": 16000

 },

 "transcription_config": {

 "language": "en",

 "output_locale": "en-US",

 "additional_vocab": ["gnocchi", "bucatini", "bigoli"],

 "diarization": "speaker_change",

 "enable_partials": true,

 "punctuation_overrides": {

 "permitted_marks": [",", "."]

 }

 }

}

The example above starts a session with the Global English model ready to consume raw PCM encoded audio with float

samples at 16kHz. It also includes an additional_vocab list containing the names of different types of pasta.

speaker_change diarization is enabled, and partials are enabled meaning that AddPartialTranscript messages will

be received as well as AddTranscript messages. Punctuation is configured to restrict the set of punctuation marks

that will be added to only commas and full stops.

AddAudio

Adds more audio data to the recognition job started on the WebSocket using StartRecognition . The server will only

accept audio after it is initialized with a job, which is indicated by a RecognitionStarted message. Only one audio

stream in one format is currently supported per WebSocket (and hence one recognition job). AddAudio is a binary

message containing a chunk of audio data and no additional metadata.

AudioAdded

If the AddAudio message is successfully received, an AudioAdded message is sent as a response. This message

confirms that the Server has accepted the data and will make a corresponding Worker process it. If the Client

38

implementation holds the data in an internal buffer to resubmit in case of an error, it can safely discard the

corresponding data after this message. The following fields are present in the response:

message: "AudioAdded"

seq_no (Int): Required. An incrementing number which is equal to the number of audio chunks that the server

has processed so far in the session. The count begins at 1 meaning that the 5th AddAudio message sent by the

client, for example, should be answered by an AudioAdded message with seq_no equal to 5.

Possible errors:

data_error , job_error , buffer_error

When sending audio faster than real time (for instance when sending files), make sure you don't send too much audio

ahead of time. For large files, this causes the audio to fill out networking buffers, which might lead to disconnects due to

WebSocket ping/pong timeout. Use AudioAdded messages to keep track what messages are processed by the engine,

and don't send more than 10s of audio data or 500 individual AddAudio messages ahead of time (whichever is lower).

Implementation details

Under special circumstances, such as when the client is sending the audio data faster than real time, the Server might

read the data slower than the Client is sending it. The Server will not read the binary AddAudio message if it is larger

than the internal audio buffer on the Server. Note that for each Worker, there is a separate buffer. In that case, the

server will read any messages coming in on the WebSocket, until enough space is made in the buffer by passing the data

to a corresponding Worker. The Client will only receive the corresponding AudioAdded response message once the

binary data is read. The WebSocket might eventually fill all the TCP buffers on the way, causing a corresponding

WebSocket to fail to write and close the connection with prejudice. The Client can use the bufferedAmount attribute of

the WebSocket to prevent this.

AddTranscript

This message is sent from the Server to the Client, when the Worker has provided the Server with a segment of

transcription output. It contains the transcript of a part of the audio the Client has sent using AddAudio - the final

transcript. These messages are also referred to as finals. Each message corresponds to the audio since the last

AddTranscript message. The transcript is final - any further AddTranscript or AddPartialTranscript messages

will only correspond to the newly processed audio. An AddTranscript message is sent when we reach an endpoint

(end of a sentence or a phrase in the audio), or after 10s if we haven't reached such an event. This timeout can be

further configured by setting transcription_config.max_delay in the StartRecognition message.

message: "AddTranscript"

metadata (Object): Required.

start_time (Number): Required. An approximate time of occurrence (in seconds) of the audio

corresponding to the beginning of the first word in the segment.

end_time (Number): Required. An approximate time of occurrence (in seconds) of the audio

corresponding to the ending of the final word in the segment.

transcript (String): Required. The entire transcript contained in the segment in text format. Providing

the entire transcript here is designed for ease of consumption; we have taken care of all the necessary

formatting required to concatenate the transcription results into a block of text. This transcript lacks the

detailed information however which is contained in the results field of the message - such as the

timings and confidences for each word.

results (List:Object):

type (String): Required. One of 'word', 'punctuation' or 'speaker_change'. 'word' results represent a

single word. 'punctuation' results represent a single punctuation symbol. 'word' and 'punctuation'

results will both have one or more alternatives representing the possible alternatives we think the

word or punctuation symbol could be. 'speaker_change' results however will have an empty

alternatives field. 'speaker_change' results will only occur when using speaker_change diarization.

start_time (Number): Required. The start time of the result relative to the start_time of the whole

segment as described in metadata .

https://www.w3.org/TR/websockets/#concept-websocket-close-fail
https://www.w3.org/TR/websockets/#dom-websocket-bufferedamount

39

end_time (Number): Required. The end time of the result relative to the start_time of the segment in

the message as described in metadata . Note that punctuation symbols and speaker_change results

are considered to be zero-duration and thus for those results start_time is equal to end_time .

is_eos (Boolean): Optional. Only present for 'punctuation' results. This indicates whether or not the

punctuation mark is considered an end-of-sentence symbol. For example full-stops are an end-of-

sentence symbol in English, whereas commas are not. Other languages, such as Japanese, may use

different end-of-sentence symbols.

alternatives (List:Object): Optional. For 'word' and 'punctuation' results this contains a list of

possible alternative options for the word/symbol.

content (String): Required. A word or punctuation mark.

confidence (Number): Required. A confidence score assigned to the alternative. Ranges from

0.0 (least confident) to 1.0 (most confident).

display (Object): Optional. Information about how the word/symbol should be displayed.

direction (String): Required. Either 'ltr' for words that should be displayed left-to-

right, or 'rtl' vice versa.

language (String): Optional. The language that the alternative word is assumed to be spoken

in. Currently this will always be equal to the language that was requested in the initial

StartRecognition message. In the future we may support multi-language transcription and

thus this field may become more useful.

speaker (String): Optional. An identifier for the speaker that spoke the alternative word.

Currently this field is unused since the Realtime Appliance or Container does not support

speaker diarization as the Batch Appliance does. In the future we may extend support for this

diarization mode in which case the field may become more useful.

AddPartialTranscript

A partial-transcript message. The structure is the same as AddTranscript . A partial transcript is a transcript that can

be changed and expanded by a future AddTranscript or AddPartialTranscript message and corresponds to the

part of audio since the last AddTranscript message. For AddPartialTranscript messages the confidence field

for alternatives has no meaning and will always be equal to 0.

Partials will only be sent if transcription_config.enable_partials is set to true in the StartRecognition

message.

SetRecognitionConfig

Allows the Client to configure the recognition session even after the initial StartRecognition message. This is only

supported for certain parameters.

message: "SetRecognitionConfig"

transcription_config (Object:TranscriptionConfig): A TranscriptionConfig object containing the new

configuration for the session, see Transcription config.

The following is an example of such a configuration message:

{

 "message": "SetRecognitionConfig",

 "transcription_config": {

 "language": "en",

 "max_delay": 3.5,

 "enable_partials": true

 }

}

Note: The language property is a mandatory element in the transcription_config object; however it is not possible

to change the language mid-way through the session (it will be ignored if you do). It is only possible to modify the

following settings through a SetRecognitionConfig message after the initial StartRecognition message:

40

max_delay

enable_partials

If you wish to alter any other parameters you must terminate the session and restart with the altered configuration.

Attempting otherwise could result in an error.

EndOfStream

This message is sent from the Client to the API to announce that it has finished sending all the audio that it intended to

send. No more AddAudio message are accepted after this message. The Server will finish processing the audio it has

received already and then send an EndOfTranscript message. This message is usually sent at the end of file or when the

microphone input is stopped.

message: "EndOfStream"

last_seq_no (Int): Required. The total number of audio chunks sent (in the AddAudio messages).

EndOfTranscript

Sent from the API to the Client when the API has finished all the audio, as marked with the EndOfStream message. The

API sends this only after it sends all the corresponding AddTranscript messages first. Upon receiving this message

the Client can safely disconnect immediately because there will be no more messages coming from the API.

Supported audio types

An AudioType object always has one mandatory field type , and potentially more mandatory fields based on the value

of type . The following types are supported:

type: "raw"

Raw audio samples, described by the following additional mandatory fields:

encoding (String): Encoding used to store individual audio samples. Currently supported values:

pcm_f32le - Corresponds to 32 bit float PCM used in the WAV audio format, little-endian architecture.

4 bytes per sample.

pcm_s16le - Corresponds to 16 bit signed integer PCM used in the WAV audio format, little-endian

architecture. 2 bytes per sample.

mulaw - Corresponds to 8 bit µ-law (mu-law) encoding. 1 byte per sample.

sample_rate (Int): Sample rate of the audio

Please ensure when sending raw audio samples in real-time that the samples are undivided. For example, if you are

sending raw audio via pcm_f32le , the sample should always contain 4 bytes. Here, if a sample did not contain 4 bytes,

and then an EndOfStream message were sent, this would then cause an error. Required byte sizes per sample for each

type of raw audio are listed above.

type: "file"

Any audio/video format supported by GStreamer. The AddAudio messages have to provide all the file contents,

including any headers. The file is usually not accepted all at once, but segmented into reasonably sized messages.

Example audio_format field value: audio_format: {type: "raw", encoding: "pcm_s16le", sample_rate:

44100}

Transcription config

A TranscriptionConfig object specifies various configuration values for the recognition engine. All the values are

optional, using default values when not provided.

language (String): Required. Language model to process the audio input, normally specified as an ISO

language code e.g. 'en'.

additional_vocab (List:AdditionalWord): Optional. Configure additional words. See Additional words. Default

is an empty list. You should be aware that there is a performance penalty (latency degradation and memory

41

increase) from using additional_vocab , especially if you intend to load in a large word list. When initialising a

session that uses additional_vocab in the config you should expect a delay of up to 15 seconds, and an

additional 800MB to 1700MB of memory (depending on the size of the list).

diarization (String): Optional. The speaker diarization method to apply to the audio. The default is "none"

indicating that no diarization will be performed. An alternative option is "speaker_change" diarization in which

the ASR system will attempt to detect any changes in speaker. Speaker changes are indicated in the results

using an object with a type set to speaker_change .

enable_partials (Boolean): Optional. Whether or not to send partials (i.e. AddPartialTranscript

messages) as well as finals (i.e. AddTranscript messages). The default is false .

max_delay (Number): Optional. Maximum delay in seconds between receiving input audio and returning final

transcription results. The default is 10. The minimum and maximum values are 2 and 20.

output_locale (String): Optional. Configure output locale. See Output locale. Default is an empty string.

punctuation_overrides (Object:PunctuationOverrides): Optional. Options for controlling punctuation in the

output transcripts. See Punctuation overrides.

speaker_change_sensitivity (Number): Optional.: Controls how responsive the system is for potential

speaker changes. The value ranges between zero and one. High value indicates high sensitivity, i.e. prefer to

indicate a speaker change if in doubt. The default is 0.4. This setting is only applicable when using

"diarization": "speaker_change" .

Additional words

Additional words expand the standard recognition dictionary with a list of words or phrases called additional words. An

additional word can also be a phrase, as long as individual words in the phrase are separated by spaces. This is the

custom dictionary supported in other Speechmatics products. A pronunciation of those words is generated

automatically or based on a provided sounds_like field. This is intended for adding new words and phrases, such as

domain-specific terms or proper names. Better results for domain-specific words that contain common words can be

achieved by using phrases rather than individual words (such as action plan).

AdditionalWord is either a String (the additional word) or an Object . The object form was introduced in 0.7.0.

The object form has the following fields:

content (String): The additional word.

sounds_like (List:String): A list of words with similar pronunciation. Each word in this list is used as one

alternative pronunciation for the additional word. These don't have to be real words - only their pronunciation

matters. This list must not be empty. Words in the list must not contain whitespace characters. When

sounds_like is used, the pronunciation automatically obtained from the content field is not used.

The String form "word" corresponds with the following Object form: {"content": "word", "sounds_like":

["word"]} .

Full example of additional_vocab :

 "additional_vocab": [

 "speechmatics",

 {"content": "gnocchi", "sounds_like": ["nyohki", "nokey", "nochi"]},

 {"content": "CEO", "sounds_like": ["seeoh"]},

 "financial crisis"

]

To clarify, the following ways of adding the word speechmatics are equivalent with all using the default pronunciation:

�. "additional_vocab": ["speechmatics"]

�. "additional_vocab": [{"content": "speechmatics"}]

�. "additional_vocab": [{"content": "speechmatics", "sounds_like": ["speechmatics"]}]

Output locale

42

Change the spellings of the transcription according to the output locale language code. If the selected language pack

supports a different output locale, this config value can be used to provide spelling for the transcription in one of these

locales. For example, the English language pack currently supports locales: en-GB , en-US and en-AU . The default

value for output_locale is an empty string that means the transcription will use its default configuration (without

spellings being altered in the transcription).

Punctuation overrides

This object contains settings for configuring punctuation in the transcription output.

permitted_marks (List:String) Optional. The punctuation marks which the client is prepared to accept in

transcription output, or the special value 'all' (the default). Unsupported marks are ignored. This value is used to

guide the transcription process.

sensitivity (Number) Optional. Ranges between zero and one. Higher values will produce more punctuation.

The default is 0.5.

Error messages

Error messages have the following fields:

message: "Error"

code (Int): Optional. A numerical code for the error. See below. TODO: This is not yet finalised.

type (String): Required. A code for the error message. See the list of possible errors below.

reason (String): Required. A human-readable reason for the error message.

Error types

type: "invalid_message"

The message received was not understood.

type: "invalid_model"

Unable to use the model for the recognition. This can happen if the language is not supported at all, or

is not available for the user.

type: "invalid_config"

The config received contains some wrong/unsupported fields.

type: "invalid_audio_type"

Audio type is not supported, is deprecated, or the audio_type is malformed.

type: "invalid_output_format"

Output format is not supported, is deprecated, or the output_format is malformed.

type: "not_authorised"

User was not recognised, or the API key provided is not valid.

type: "insufficient_funds"

User doesn't have enough credits or any other reason preventing the user to be charged for the job

properly.

type: "not_allowed"

User is not allowed to use this message (is not allowed to perform the action the message would

invoke).

type: "job_error"

Unable to do any work on this job, the Worker might have timed out etc.

type: "data_error"

Unable to accept the data specified - usually because there is too much data being sent at once

type: "buffer_error"

Unable to fit the data in a corresponding buffer. This can happen for clients sending the input data

faster then real-time.

type: "protocol_error"

43

Message received was syntactically correct, but could not be accepted due to protocol limitations. This

is usually caused by messages sent in the wrong order.

type: "unknown_error"

An error that did not fit any of the types above.

Note that invalid_message , protocol_error and unknown_error can be triggered as a response to any type of

messages.

The transcription is terminated and the connection is closed after any error.

Warning messages

Warning messages have the following fields:

message: "Warning"

code (Int): Optional. A numerical code for the warning. See below. TODO: This is not yet finalised.

type (String): Required. A code for the warning message. See the list of possible warnings below.

reason (String): Required. A human-readable reason for the warning message.

Warning types

type: "duration_limit_exceeded"

The maximum allowed duration of a single utterance to process has been exceeded. Any AddAudio

messages received that exceed this limit are confirmed with AudioAdded, but are ignored by the

transcription engine. Exceeding the limit triggers the same mechanism as receiving an EndOfStream

message, so the Server will eventually send an EndOfTranscript message and suspend.

It has the following extra field:

duration_limit (Number): The limit that was exceeded (in seconds).

Info messages

Info messages denote additional information sent form the Server to the Client. Those are similar to Error and

Warning messages in syntax, but don't actually denote any problem. The Client can safely ignore these messages or

use them for additional client-side logging.

message: "Info"

code (Int): Optional. A numerical code for the informational message. See below. TODO: This is not yet

finalised.

type (String): Required. A code for the info message. See the list of possible info messages below.

reason (String): Required. A human-readable reason for the informational message.

Info message types

type: "recognition_quality"

Informs the client what particular quality-based model is used to handle the recognition.

It has the following extra field:

quality (String): Quality-based model name. It is one of "telephony" , "broadcast" . The

model is selected automatically, for high-quality audio (12kHz+) the broadcast model is used,

for lower quality audio the telephony model is used.

type: "model_redirect"

Informs the client that a deprecated language code has been specified, and will be handled with a

different model. For example, if the model parameter is set to one of en-US, en-GB, or en-AU, then the

request may be internally redirected to the Global English model (en).

type: "deprecated"

Informs about using a feature that is going to be removed in a future release.

44

Example communication

The communication consists of 3 stages - initialization, transcription and a disconnect handshake.

On initialization, the StartRecognition message is sent from the Client to the API and the Client must block and wait

until it receives a RecognitionStarted message.

Afterwards, the transcription stage happens. The client keeps sending AddAudio messages. The API asynchronously

replies with AudioAdded messages. The API also asynchronously sends AddPartialTranscript and

AddTranscript messages.

Once the client doesn't want to send any more audio, the disconnect handshake is performed. The Client sends an

EndOfStream message as it's last message. No more messages are handled by the API afterwards. The API processes

whatever audio it has buffered at that point and sends all the AddTranscript and AddPartialTranscript messages

accordingly. Once the API processes all the buffered audio, it sends an EndOfTranscript message and the Client can

then safely disconnect.

Note: In the example below, -> denotes a message sent by the Client to the API, <- denotes a message send by the

API to the Client. Any comments are denoted "[like this]" .

-> {"message": "StartRecognition", "audio_format": {"type": "file"},

 "transcription_config": {"language": "en", "enable_partials": true}}

 <- {"message": "RecognitionStarted", "id": "807670e9-14af-4fa2-9e8f-5d525c22156e"}

-> "[binary message - AddAudio 1]"

-> "[binary message - AddAudio 2]"

 <- {"message": "AudioAdded", "seq_no": 1}

 <- {"message": "Info", "type": "recognition_quality", "quality": "broadcast", "reason": "Running

recognition using a broadcast model quality."}

 <- {"message": "AudioAdded", "seq_no": 2}

-> "[binary message - AddAudio 3]"

 <- {"message": "AudioAdded", "seq_no": 3}

"[asynchronously received transcripts:]"

 <- {"message": "AddPartialTranscript", "metadata": {"start_time": 0.0, "end_time":

0.5399999618530273, "transcript": "One"},

 "results": [{"alternatives": [{"confidence": 0.0, "content": "One"}],

 "start_time": 0.47999998927116394, "end_time": 0.5399999618530273, "type":

"word"}

]}

 <- {"message": "AddPartialTranscript", "metadata": {"start_time": 0.0, "end_time":

0.7498992613545260, "transcript": "One to"},

 "results": [{"alternatives": [{"confidence": 0.0, "content": "One"}],

 "start_time": 0.47999998927116394, "end_time": 0.5399999618530273, "type":

"word"},

 {"alternatives": [{"confidence": 0.0, "content": "to"}],

 "start_time": 0.6091238623430891, "end_time": 0.7498992613545260, "type":

"word"}

]}

 <- {"message": "AddPartialTranscript", "metadata": {"start_time": 0.0, "end_time":

0.9488123643240011, "transcript": "One to three"},

 "results": [{"alternatives": [{"confidence": 0.0, "content": "One"}],

45

 "start_time": 0.47999998927116394, "end_time": 0.5399999618530273, "type":

"word"},

 {"alternatives": [{"confidence": 0.0, "content": "to"}],

 "start_time": 0.6091238623430891, "end_time": 0.7498992613545260, "type":

"word"}

 {"alternatives": [{"confidence": 0.0, "content": "three"}],

 "start_time": 0.8022338627780892, "end_time": 0.9488123643240011, "type":

"word"}

]}

 <- {"message": "AddTranscript", "metadata": {"start_time": 0.0, "end_time": 0.9488123643240011,

"transcript": "One two three."},

 "results": [{"alternatives": [{"confidence": 1.0, "content": "One"}],

 "start_time": 0.47999998927116394, "end_time": 0.5399999618530273, "type":

"word"},

 {"alternatives": [{"confidence": 1.0, "content": "to"}],

 "start_time": 0.6091238623430891, "end_time": 0.7498992613545260, "type":

"word"}

 {"alternatives": [{"confidence": 0.96, "content": "three"}],

 "start_time": 0.8022338627780892, "end_time": 0.9488123643240011, "type":

"word"}

 {"alternatives": [{"confidence": 1.0, "content": "."}],

 "start_time": 0.9488123643240011, "end_time": 0.9488123643240011, "type":

"punctuation", "is_eos": true}

]}

"[closing handshake]"

-> {"message":"EndOfStream","last_seq_no":3}

 <- {"message": "EndOfTranscript"}

46

Examples how to use the V2 API
The V2 WebSocket Speech API aligns with other Speechmatics platforms such as the Batch Virtual Appliane and

Speechmatics SaaS.

WebSocket URI

To use the V2 API you use the '/v2' endpoint for the URI, for example:

wss://rt-asr.example.com:9000/v2

[NOTE] WebSocket Schemes

If you are using the Real-Time Container then you will need to use the ws:// scheme, for example: ws://rt-

asr.example.com:9000/v2 . If you need to access the Real-Time Container over a secure WebSocket connection

from you client, then you'll need to consider an SSL offload from a load-balancer or similar.

Session Configuration

The V2 API is configured by sending a StartRecognition message initially when the WebSocket connection begins.

We have designed the format of this message to be very similar to the config.json object that has been used for a

while now with the Speechmatics batch mode platforms (Batch Virtual Appliance, Batch Container and SaaS). The

transcription_config section of the message should be almost identical between the two modes. There are some

47

minor differences (for example batch features a different set of diarization options, and real-time features some settings

which don't apply to batch such as max_delay).

TranscriptionConfig

A transcription_config structure is used to specify various configuration values for the recognition engine when the

StartRecognition message is sent to the server. All values apart from language are optional. Here's an example of

calling the StartRecognition message with this structure:

{

 "message": "StartRecognition",

 "transcription_config": {

 "language": "en"

 },

 "audio_format": {

 "type": "raw",

 "encoding": "pcm_f32le",

 "sample_rate": 16000

 }

 }

}

AddAudio

Once the websocket session is setup and you've sucessfully called StartRecognition you'll receive a

RecognitionStarted message from server. You can then just to send the binary audio chunks, which we refer to as

AddAudio messages.

You would replace this in the V2 API with much simpler code:

// NEW V2 EXAMPLE

function addAudio(audioData) {

 ws.send(audioData);

 seqNoIn++;

}

We recommend that you do not send more than 10 seconds of audio data or 500 individual AddAudio messages ahead of

time.

Final and Partial Transcripts

The AddTranscript and AddPartialTranscript messages from the server output a JSON format which aligns with

the JSON output format used by other Speechmatics products. There is a now a results list which contains the

transcribed words and punctuation marks along with timings and confidence scores. Here's an example of a final

transcript output:

{

 "message":"AddTranscript",

 "results":[

 {

 "start_time":0.11670026928186417,

 "end_time":0.4049381613731384,

 "alternatives":[

 {

 "content":"gale",

 "confidence":0.7034434080123901

 }

],

48

 "type":"word"

 },

 {

 "start_time":0.410246878862381,

 "end_time":0.6299981474876404,

 "alternatives":[

 {

 "content":"eight",

 "confidence":0.670033872127533

 }

],

 "type":"word"

 },

 {

 "start_time":0.6599999666213989,

 "end_time":1.0799999237060547,

 "alternatives":[

 {

 "content":"becoming",

 "confidence":1.0

 }

],

 "type":"word"

 },

 {

 "start_time":1.0799999237060547,

 "end_time":1.6154180765151978,

 "alternatives":[

 {

 "content":"cyclonic",

 "confidence":1.0

 }

],

 "type":"word"

 },

 {

 "start_time":1.6154180765151978,

 "is_eos":true,

 "end_time":1.6154180765151978,

 "alternatives":[

 {

 "content":".",

 "confidence":1.0

 }

],

 "type":"punctuation"

 }

],

 "metadata":{

 "transcript":"gale eight becoming cyclonic.",

 "start_time":190.65994262695312,

 "end_time":194.46994256973267

 },

 "format":"2.4"

}

49

You can use the metadata.transcript property to get the complete final transcript as a chunk of plain text. The

format property describes the exact version of the transcription output format. This may change in future releases if

the output format is updated.

Advanced Punctuation

Some language models (English, French, German and Spanish currently) support advanced punctuation. This uses

machine learning techniques to add in more naturalistic punctuation, improving the readability of your transcripts. As well

as putting punctuation marks in more naturalistic positions in the output, additional punctuation marks such as commas

(,) exclamation marks (!) and question marks (?) will also appear.

There is no need to explicitly enable this in the configuration; languages that support advanced punctuation will

automatically output these marks. If you do not want to see these punctuation marks in the output, then you can

explicitly control this through the punctuation_overrides setting within the transcription_config object, for

example:

"transcription_config": {

 "language": "en",

 "punctuation_overrides": {

 "permitted_marks":["."]

 }

}

Note that changing the punctuation setting from the default can take a couple of seconds, which means if the user is

using non-default neural punctuation sensitivity, after they send the StartRecognition message, there will be a slight

delay (2-3 seconds) before the RecognitionStarted message is sent back.

The JSON output places punctuation marks in the results list marked with a type of "punctuation" . So you can also

filter on the output if you want to modify or remove punctuation.

Example Usage
This section provides some client code samples that show simple usage of the V2 WebSockets Speech API. It shows how

you can test your Real-Time Appliance or Conttainer using a minimal WebSocket client.

JavaScript

The basic usage of the WebSockets interface from a JavaScript client is shown in this section. In the first instance you

setup the connection to the server and define the various event handlers that are required:

var ws = new WebSocket('wss://rta:9000/v2');

ws.binaryType = "arraybuffer";

ws.onopen = function(event) { onOpen(event) };

ws.onmessage = function(event) { onMessage(event) };

ws.onclose = function(event) { onClose(event) };

ws.onerror = function(event) { onError(event) };

In the above example, the hostname of the Real-Time Appliance or Container is rta – change this to match the IP address

or hostname of your Real-Time Appliance or Container. The port used is 9000 and you need to make sure that you add

'/v2' to the WebSocket URI. Note that the Real-Time Appliance only supports the secure WebSocket (wss) protocol. On

the other hand the Real-Time Container only supports WebSocket (ws) protocol. You should also ensure that the

binaryType property of the WebSocket object is set to "arraybuffer" .

In the onopen handler you initiate the session by sending the StartRecognition message to the server, for example:

function onOpen(evt) {

 var msg = {

50

 "message": "StartRecognition",

 "transcription_config": {

 "language": "en",

 "output_locale": "en-GB"

 },

 "audio_format": {

 "type": "raw",

 "encoding": "pcm_s16le",

 "sample_rate": 16000

 }

 };

 ws.send(JSON.stringify(msg));

}

An onmessage handler is where you will respond to the server-initiated messages sent by the appliance or container,

and decide how to handle them. Typically, this involves implementing functions to display or process data that you get

back from the server.

function onMessage(evt) {

 var objMsg = JSON.parse(evt.data);

 switch (objMsg.message) {

 case "RecognitionStarted":

 recognitionStarted(objMsg);

 break;

 case "AudioAdded":

 audioAdded(objMsg);

 break;

 case "AddPartialTranscript":

 case "AddTranscript":

 transcriptOutput(objMsg);

 break;

 case "EndOfTranscript":

 endTranscript();

 break;

 case "Info":

 case "Warning":

 case "Error":

 showMessage(objMsg);

 break;

 default:

 console.log("UNKNOWN MESSAGE: " + objMsg.message);

 }

}

Once the WebSocket is initialized, the StartRecognition message is sent to the appliance or container to setup the

audio input. It is then a matter of sending audio data periodically using the AddAudio message.

Your AddAudio message will take audio from a source (for example microphone input, or an audio stream) and pass it to

the Real-Time Appliance or Container.

51

// Send audio data to the API using the AddData message.

function addAudio(audioData) {

 ws.send(audioData);

 seqNoIn++;

}

In this example we use a counter seqNoIn to keep track of the addAudio messages we've sent.

A set of server-initiated transcript messages are triggered to indicate the availability of transcripted text:

AddTranscript

AddPartialTranscript

See above for changes to the JSON output schema in the V2 API. For full details of the output schema refer to the

AddTranscript section in the API reference.

Finally, the client should send an EndOfStream message and close the WebSocket when it terminates. This should be

done in order to release resources on the appliance or container and allow other clients to connect and use resources.

The Mozilla developer network provides a useful reference to the WebSocket API.

Python

Real-Time Virtual Appliance Usage

Speechmatics provides a Python library called smwebsocket-py which is a wrapper to the WebSockets API for use with

the Real-Time Virtual Appliance, making it easy to incorporate Speechmatics real-time transcription into your Python

program. Please contact support@speechmatics.com if you require this library.

The smwebsocket-py library can be incorporated into your own applications, used as a reference for your own client

library, or called directly from the command line (CLI) like this (to pass a test audio file to the appliance or container):

python -m smwebsocket.cli --url wss://rta:9000/v2 --max-delay 3 --lang en test.mp3

Note that configuration options are specified on the command-line as parameters, with a '_' character in the

configuration option being replaced by a '-'. The CLI option accepts an audio stream on standard input, meaning that you

can stream in a live microphone feed. To get help on the CLI use the following command:

python -m smwebsocket.cli --help

The library depends on Python 3.7 or above, since it makes use of some of the newer asyncio features introduced with

Python 3.7.

Standalone Real-Time Container Usage

If you are using the Real-Time Container, you can use a Python library called speechmatics-python . Please contact

support@speechmatics.com if you require this library. You can also use this library for the Real-Time Virtual Appliance.

The speechmatics-python library can be incorporated into your own applications, used as a reference for your own

client library, or called directly from the command line (CLI) like this (to pass a test audio file to the appliance or

container):

speechmatics transcribe --url ws://rtc:9000/v2 --lang en --ssl-mode none test.mp3

Note that configuration options are specified on the command-line as parameters, with a '_' character in the

configuration option being replaced by a '-'. The CLI option accepts an audio stream on standard input, meaning that you

can stream in a live microphone feed. To get help on the CLI use the following command:

speechmatics transcribe --help

http://localhost:61835/en/real-time-appliance/api-v2/speech-api-guide/v3.5.0#addtranscript
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
mailto:support@speechmatics.com
mailto:support@speechmatics.com

52

The library depends on Python 3.7 or above, since it makes use of some of the newer asyncio features introduced with

Python 3.7.

Formatting Common Entities

Overview

Entities are commonly recognisable classes of information that appear in languages, for example numbers and dates.

Formatting these entities is commonly referred to as Inverse Text Normalisation (ITN). Using ITN, Speechmatics will

output entities in a predictable, consistent written form, reducing post-processing work required aiming to make the

transcript more readable.

The language pack will use these formatted entities by default in the transcription. Additional metadata about these

entities can be requested via the API including the spoken words without formatting and the entity class that was used to

format it.

Supported Languages

Entities are supported in the following languages:

Cantonese

Chinese Mandarin (Simplified and Traditional)

English

French

German

Hindi

Italian

Japanese

Portuguese

Russian

Spanish

Using the enable_entities parameter

Speechmatics now includes an enable_entities parameter. This can be requested via the API. By default this is

false .

Changing enable_entities to true will enable a richer set of metadata in the JSON output only. Customers can

choose between the default written form, spoken form, or a mixture, for their own workflows.

The changes are as following:

A new type - entity in the JSON output in addition to word and punctuation . For example: "1.99" would

have a type of entity and a corresponding entity_class of decimal

The entity will contain the formatted text in the content section, like other words and punctuation

The content can include spaces, non-breaking spaces, and symbols (e.g. $/£/%)

A new output element entity , entity_class has been introduced. This provides more detail about how the

entity has been formatted. A full list of entity classes is provided below.

The start and end time of the entity will span all the words that make up that entity

The entity also contains two ways that the content will be output:

spoken_form - Each individual word within the entity, written out in words as it was spoken. Each

individual word has its own start time, end time, and confidence score. For example: "one", "million",

"dollars"

written_form - The same output as within entity content, with a type of word instead. If there are

spaces in the content it will be split into individual words. For example: "$1", "million"

53

Configuration example

Please see an example configuration file that would request entities:

{

 "message": "StartRecognition",

 "transcription_config": {

 "language": "en",

 "enable_entities": true

 }

}

Different entity classes

The following entity_classes can be returned. Entity classes indicate how the numerals are formatted. In some cases,

the choice of class can be contextual and the class may not be what was expected (for example "2001" may be a

"cardinal" instead of "date"). The number of entity_classes may grow or shrink in the future.

N.B. Please note existing behaviour for English where numbers from zero to 10 (excluding where they are output as a

decimal/money/percentage) are output as words is unchanged.

Entity

Class
Formatting Behaviour

Spoken Word Form

Example

Written Form

Example

alphanum

A series of three or more alphanumerics,

where an alphanumeric is a digit less than

10, a character or symbol

triple seven five four 77754

cardinal

Any number greater than ten is converted to

numbers. Numbers ten or below remain as

words. Includes negative numbers

nineteen 19

credit card

A long series of spoken digits less than 10

are converted to numbers. Support for

common credit cards

one one one one two two

two two three three three

three four four four four

1111222233334444

date

Day, month and year, or a year on its own.

Any words spoken in the date are maintained

(including "the" and "of")

fifteenth of January twenty

twenty two

15th of January

2022

decimal A series of numbers divided by a separator eighteen point one two 18.12

fraction

Small fractions are kept as words ("half"),

complex fractions are converted to numbers

separated by "/"

three sixteenths 3/16

money

Currency words are converted to symbols

before or after the number (depending on

the language)

twenty dollars $20

ordinal
Ordinals greater than 10 are output as

numbers
forty second 42nd

percentage
Numbers with a per cent have the per cent

converted to a % symbol
duecento percento 200%

span
A range expressed as "x to y" where x and y

correspond to another entity class

one hundred to two

hundred million pounds
100 to £200 million

time Times are converted to numbers eleven forty a m 11�40 a.m.

54

Output locale styling

Each language has a specific style applied to it for thousands, decimals and where the symbol is positioned for money or

percentages.

For example

English contains commas as separators for numbers above 9999 (example: "20,000"), the money symbol at the

start (example: "$10") and full stops for decimals (example: "10.5")

German contains full stops as separators for numbers above 9999 (example: "20.000"), the money symbol

comes after with a non-breaking space (example: "10 $") and commas for decimals (example: "10,5")

French contains non-breaking spaces as separators for numbers above 9999 (example: "20 000"), the money

symbol comes after with a non-breaking space (example: "10 $") and commas for decimals (example: "10,5")

Example output

Here is an example of a transcript requested with enable_entities set to true :

An entity that is "17th of January 2022", including spaces

The start and end times span the entire entity

An entity_class of date

The spoken_form is split into the following individual words: "seventeenth", "of", "January", "twenty",

"twenty", "two". Each word has its own start and end time

the written_form split into the following individual words: "17th", "of", "January", "2022". Each word

has its own start and end time

 [{

 "message": "AddTranscript",

 "format": 2.7,

 "results": [{

 "alternatives": [{

 "confidence": 1,

 "content": "17th of January 2022",

 "language": "en"

 }],

 "end_time": 3.0899999141693115,

 "entity_class": "date",

 "spoken_form": [{

 "alternatives": [{

 "confidence": 1,

 "content": "Seventeenth",

 "language": "en"

 }],

 "end_time": 1.3799999952316284,

 "start_time": 0.8399999737739563,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "of",

 "language": "en"

 }],

 "end_time": 1.4399999380111694,

 "start_time": 1.3799999952316284,

word Entities that do not match a specific class hundreds hundreds

55

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "January",

 "language": "en"

 }],

 "end_time": 1.9199999570846558,

 "start_time": 1.4399999380111694,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "twenty",

 "language": "en"

 }],

 "end_time": 2.25,

 "start_time": 1.9199999570846558,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "twenty",

 "language": "en"

 }],

 "end_time": 2.549999952316284,

 "start_time": 2.25,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 0.9504331946372986,

 "content": "two",

 "language": "en"

 }],

 "end_time": 3.0899999141693115,

 "start_time": 2.549999952316284,

 "type": "word"

 }

],

 "start_time": 0.8399999737739563,

 "type": "entity",

 "written_form": [{

 "alternatives": [{

 "confidence": 1,

 "content": "17th",

 "language": "en"

 }],

 "end_time": 1.1999999682108562,

 "start_time": 0.8399999737739563,

 "type": "word"

 },

 {

 "alternatives": [{

56

 "confidence": 1,

 "content": "of",

 "language": "en"

 }],

 "end_time": 1.559999962647756,

 "start_time": 1.1999999682108562,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "January",

 "language": "en"

 }],

 "end_time": 1.9199999570846558,

 "start_time": 1.559999962647756,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "2022",

 "language": "en"

 }],

 "end_time": 3.0899999141693115,

 "start_time": 1.9199999570846558,

 "type": "word"

 }

]

 }],

 "metadata": {

 "end_time": 5.16,

 "start_time": 0,

 "transcript": "17th of January 2022 "

 }

}]

If enable_entities is set to false , the output is as below:

 [{

 "message": "AddTranscript",

 "format": 2.7,

 "results": [{

 "alternatives": [{

 "confidence": 1,

 "content": "17th",

 "language": "en"

 }],

 "end_time": 1.1999999682108562,

 "start_time": 0.8399999737739563,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "of",

 "language": "en"

 }],

57

 "end_time": 1.559999962647756,

 "start_time": 1.1999999682108562,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "January",

 "language": "en"

 }],

 "end_time": 1.9199999570846558,

 "start_time": 1.559999962647756,

 "type": "word"

 },

 {

 "alternatives": [{

 "confidence": 1,

 "content": "2022",

 "language": "en"

 }],

 "end_time": 3.0899999141693115,

 "start_time": 1.9199999570846558,

 "type": "word"

 }

],

 "metadata": {

 "end_time": 5.16,

 "start_time": 0,

 "transcript": "17th of January 2022 "

 }

}]

